Effects of correlations on neutrino opacities in nuclear matter

被引:177
作者
Burrows, A [1 ]
Sawyer, RF
机构
[1] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW C | 1998年 / 58卷 / 01期
关键词
D O I
10.1103/PhysRevC.58.554
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Including nucleon-nucleon correlations due to both Fermi statistics and nuclear forces, we have developed a general formalism for calculating the neutral-current neutrino-nucleon scattering rates in nuclear matter. We derive corrections to the dynamic structure factors due to both density and spin correlations and find that neutrino-nucleon scattering rates are suppressed by large factors around and above nuclear density. Hence, in particular for the nu(mu) and nu(tau) neutrinos, but also for the nu(e) neutrinos, supernova cores are more "transparent" than previously thought. The many-body corrections increase with density, decrease with temperature, and are roughly independent of incident neutrino energy. In addition, we find that the spectrum of energy transfers in neutrino scattering is considerably broadened by the interactions in the medium. An identifiable component of this broadening comes from the absorption and emission of quanta of collective modes akin to the Gamow-Teller and giant dipole resonances in nuclei (zero sound; spin sound), with Cerenkov kinematics. Under the assumption that both the charged-current and the neutral-current cross sections are decreased by many-body effects, we calculate a set of ad hoc protoneutron star cooling models to gauge the potential importance of the new opacities to the supernova itself. While the early luminosities are not altered, the luminosities after many hundreds of milliseconds to seconds can be increased by factors that range from 10 to 100 %. Such enhancements may have a bearing on the efficacy of the neutrino-driven supernova mechanism, the delay to explosion, the energy of the explosion, and the strength and relative role of convective overturn at late times. However, the actual consequences, if any, of these new neutrino opacities remain to be determined.
引用
收藏
页码:554 / 571
页数:18
相关论文
共 44 条
[1]   THE NUCLEON NUCLEON-INTERACTION AND THE NUCLEAR MANY-BODY PROBLEM [J].
BACKMAN, SO ;
BROWN, GE ;
NISKANEN, JA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 124 (01) :1-68
[2]   REVIVAL OF A STALLED SUPERNOVA SHOCK BY NEUTRINO HEATING [J].
BETHE, HA ;
WILSON, JR .
ASTROPHYSICAL JOURNAL, 1985, 295 (01) :14-23
[3]   OBSERVATION OF A NEUTRINO BURST IN COINCIDENCE WITH SUPERNOVA 1987A IN THE LARGE MAGELLANIC CLOUD [J].
BIONTA, RM ;
BLEWITT, G ;
BRATTON, CB ;
CASPER, D ;
CIOCIO, A ;
CLAUS, R ;
CORTEZ, B ;
CROUCH, M ;
DYE, ST ;
ERREDE, S ;
FOSTER, GW ;
GAJEWSKI, W ;
GANEZER, KS ;
GOLDHABER, M ;
HAINES, TJ ;
JONES, TW ;
KIELCZEWSKA, D ;
KROPP, WR ;
LEARNED, JG ;
LOSECCO, JM ;
MATTHEWS, J ;
MILLER, R ;
MUDAN, MS ;
PARK, HS ;
PRICE, LR ;
REINES, F ;
SCHULTZ, J ;
SEIDEL, S ;
SHUMARD, E ;
SINCLAIR, D ;
SOBEL, HW ;
STONE, JL ;
SULAK, LR ;
SVOBODA, R ;
THORNTON, G ;
VANDERVELDE, JC ;
WUEST, C .
PHYSICAL REVIEW LETTERS, 1987, 58 (14) :1494-1496
[4]   THE GIANT GAMOW-TELLER RESONANCE [J].
BROWN, GE ;
RHO, M .
NUCLEAR PHYSICS A, 1981, 372 (03) :397-417
[5]   STELLAR CORE COLLAPSE - NUMERICAL-MODEL AND INFALL EPOCH [J].
BRUENN, SW .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1985, 58 (04) :771-841
[6]   A THEORY OF SUPERNOVA EXPLOSIONS [J].
BURROWS, A ;
GOSHY, J .
ASTROPHYSICAL JOURNAL, 1993, 416 (02) :L75-L78
[7]   SUPERNOVA NEUTRINOS [J].
BURROWS, A .
ASTROPHYSICAL JOURNAL, 1988, 334 (02) :891-908
[8]   ON THE NATURE OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS [J].
BURROWS, A ;
HAYES, J ;
FRYXELL, BA .
ASTROPHYSICAL JOURNAL, 1995, 450 (02) :830-&
[9]   Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion [J].
Burrows, A ;
Hayes, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (03) :352-355
[10]   THE BIRTH OF NEUTRON-STARS [J].
BURROWS, A ;
LATTIMER, JM .
ASTROPHYSICAL JOURNAL, 1986, 307 (01) :178-196