Unified and generalized approach to quantum error correction

被引:200
作者
Kribs, D [1 ]
Laflamme, R
Poulin, D
机构
[1] Univ Waterloo, Ins tQuantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
关键词
D O I
10.1103/PhysRevLett.94.180501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a unified approach to quantum error correction, called operator quantum error correction. Our scheme relies on a generalized notion of a noiseless subsystem that is investigated here. By combining the active error correction with this generalized noiseless subsystems method, we arrive at a unified approach which incorporates the known techniques-i.e., the standard error correction model, the method of decoherence-free subspaces, and the noiseless subsystem method-as special cases. Moreover, we demonstrate that the quantum error correction condition from the standard model is a necessary condition for all known methods of quantum error correction.
引用
收藏
页数:4
相关论文
共 12 条
[1]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[2]   Luders theorem for unsharp quantum measurements [J].
Busch, P ;
Singh, J .
PHYSICS LETTERS A, 1998, 249 (1-2) :10-12
[3]  
Davidson KR, 1996, C ALGEBRAS EXAMPLE F
[4]   Preserving coherence in quantum computation by pairing quantum bits [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1953-1956
[5]   Theory of decoherence-free fault-tolerant universal quantum computation [J].
Kempe, J ;
Bacon, D ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW A, 2001, 63 (04) :1-29
[6]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[7]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528
[8]   Quantum channels, wavelets, dilations and representations of On [J].
Kribs, DW .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :421-433
[9]   Decoherence-free subspaces for quantum computation [J].
Lidar, DA ;
Chuang, IL ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 1998, 81 (12) :2594-2597
[10]  
Stinespring W. F., 1955, P AM MATH SOC, V6, P211, DOI [10.2307/2032342, DOI 10.2307/2032342]