Chaotic dynamics, fluctuations, nonequilibrium ensembles

被引:62
作者
Gallavotti, G [1 ]
机构
[1] Univ Rome La Sapienza, I-00185 Rome, Italy
关键词
D O I
10.1063/1.166320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ideas and the conceptual steps leading from the ergodic hypothesis for equilibrium statistical mechanics to the chaotic hypothesis for equilibrium and nonequilibrium statistical mechanics are illustrated. The fluctuation theorem linear law and universal slope prediction for reversible systems is briefly derived. Applications to fluids are briefly alluded to. (C) 1998 American Institute of Physics.
引用
收藏
页码:384 / 392
页数:9
相关论文
共 38 条
[1]  
[Anonymous], 1969, STAT MECH
[2]  
BOLTZMANN L, KINETIC THEORY, V2, P238
[3]  
Boltzmann L., 1896, Vorlesungen uber Gastheorie
[4]  
BOLTZMANN L, ENTGEGNUNG WARMETHEO, V2, P218
[5]  
BOLTZMANN L, 1968, WISSENSHAFTLICHE ABH, V3
[6]   Chaotic principle: An experimental test [J].
Bonetto, F ;
Gallavotti, G ;
Garrido, PL .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 105 (04) :226-252
[7]   Reversibility, coarse graining and the chaoticity principle [J].
Bonetto, F ;
Gallavotti, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (02) :263-275
[8]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[9]  
CILIBERTO S, 1998, EXPT VERIFICATION GA
[10]   Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states [J].
Dellago, C ;
Posch, HA ;
Hoover, WG .
PHYSICAL REVIEW E, 1996, 53 (02) :1485-1501