Moments of skew-normal random vectors and their quadratic forms

被引:107
作者
Genton, MG [1 ]
He, L [1 ]
Liu, XW [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
autocovariance function; multivariate skew-normal distribution; quadratic form; variogram;
D O I
10.1016/S0167-7152(00)00164-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper. we derive the moments of random vectors with multivariate skew-normal distribution and their quadratic forms. Applications to time series and spatial statistics are discussed. In particular, it is shown that the moments of the sample autocovariance function and of the sample variogram estimator do not depend on the skewness vector. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:319 / 325
页数:7
相关论文
共 15 条
[1]   Statistical applications of the multivariate skew normal distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :579-602
[2]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[3]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[4]  
Azzalini A., 1986, Rivista Statistica, V46, P199
[5]  
Brockwell P.J., 1991, TIME SERIES THEORY M
[6]  
Cressie N, 1993, STAT SPATIAL DATA
[7]  
Fang K.-T., 1990, GEN MULTIVARIATE ANA
[8]   Variogram fitting by generalized least squares using an explicit formula for the covariance structure [J].
Genton, MG .
MATHEMATICAL GEOLOGY, 1998, 30 (04) :323-345
[9]   The correlation structure of Matheron's classical variogram estimator under elliptically contoured distributions [J].
Genton, MG .
MATHEMATICAL GEOLOGY, 2000, 32 (01) :127-137
[10]  
Genton MG, 1998, STAT PROBABIL LETT, V41, P131