Almost all monotone Boolean functions are polynomially learnable using membership queries

被引:8
作者
Shmulevich, I
Korshunov, AD
Astola, J
机构
[1] Tampere Univ Technol, Tampere Int Ctr Signal Proc, FIN-33101 Tampere, Finland
[2] Sobolev Inst Math, Novosibirsk, Russia
关键词
monotone Boolean function; learning; membership query; computational complexity;
D O I
10.1016/S0020-0190(00)00225-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider exact learning or identification of monotone Boolean functions by only using membership queries. It is shown that almost all monotone Boolean functions are polynomially identifiable in the input number of variables as well as the output being the sum of the sizes of the CNF and DNF representations. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:211 / 213
页数:3
相关论文
共 7 条
[1]   NEGATIVE RESULTS FOR EQUIVALENCE QUERIES [J].
ANGLUIN, D .
MACHINE LEARNING, 1990, 5 (02) :121-150
[2]   COMPLEXITY OF IDENTIFICATION AND DUALIZATION OF POSITIVE BOOLEAN FUNCTIONS [J].
BIOCH, JC ;
IBARAKI, T .
INFORMATION AND COMPUTATION, 1995, 123 (01) :50-63
[3]   Polynomial-time recognition of 2-monotonic positive Boolean functions given by an oracle [J].
Boros, E ;
Hammer, PL ;
Ibaraki, T ;
Kawakami, K .
SIAM JOURNAL ON COMPUTING, 1997, 26 (01) :93-109
[4]   EXACT LEARNING BOOLEAN FUNCTIONS VIA THE MONOTONE THEORY [J].
BSHOUTY, NH .
INFORMATION AND COMPUTATION, 1995, 123 (01) :146-153
[5]   Efficient read-restricted monotone CNF/DNF dualization by learning with membership queries [J].
Domingo, C ;
Mishra, N ;
Pitt, L .
MACHINE LEARNING, 1999, 37 (01) :89-110
[6]  
Korshunov A.D., 1981, Problemy Kibernetiki, V38, P5
[7]   The maximum latency and identification of positive Boolean functions [J].
Makino, K ;
Ibaraki, T .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1363-1383