Folding of prion protein to its native α-helical conformation is under kinetic control

被引:190
作者
Baskakov, IV
Legname, G
Prusiner, SB
Cohen, FE
机构
[1] Univ Calif San Francisco, Inst Neurodegenerat Dis, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol Pharmaceut Chem & M, San Francisco, CA 94143 USA
关键词
D O I
10.1074/jbc.C100180200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The recombinant mouse prion protein (MoPrP) can be folded either to a monomeric alpha -helical or oligomeric beta -sheet-rich isoform. By using circular dichroism spectroscopy and size-exclusion chromatography, we show that the beta -rich isoform of MoPrP is thermodynamically more stable than the native alpha -helical isoform. The conformational transition from the alpha -helical to beta -rich isoform is separated by a large energetic barrier that is associated with unfolding and with a higher order kinetic process related to oligomerization. Under partially denaturing acidic conditions, MoPrP avoids the kinetic trap posed by the alpha -helical isoform and folds directly to the thermodynamically more stable beta -rich isoform. Our data demonstrate that the folding of the prion protein to its native alpha -helical monomeric conformation is under kinetic control.
引用
收藏
页码:19687 / 19690
页数:4
相关论文
共 23 条
  • [1] PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS
    ANFINSEN, CB
    [J]. SCIENCE, 1973, 181 (4096) : 223 - 230
  • [2] KINETICS VERSUS THERMODYNAMICS IN PROTEIN-FOLDING
    BAKER, D
    AGARD, DA
    [J]. BIOCHEMISTRY, 1994, 33 (24) : 7505 - 7509
  • [3] Self-assembly of recombinant prion protein of 106 residues
    Baskakov, IV
    Aagaard, C
    Mehlhorn, I
    Wille, H
    Groth, D
    Baldwin, MA
    Prusiner, SB
    Cohen, FE
    [J]. BIOCHEMISTRY, 2000, 39 (10) : 2792 - 2804
  • [4] Nature disfavors sequences of alternating polar and non-polar amino acids: Implications for amyloidogenesis
    Broome, BM
    Hecht, MH
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (04) : 961 - 968
  • [5] Designing conditions for in vitro formation of amyloid protofilaments and fibrils
    Chiti, F
    Webster, P
    Taddei, N
    Clark, A
    Stefani, M
    Ramponi, G
    Dobson, CM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) : 3590 - 3594
  • [6] Mutational analysis of the propensity for amyloid formation by a globular protein
    Chiti, F
    Taddei, N
    Bucciantini, M
    White, P
    Ramponi, G
    Dobson, CM
    [J]. EMBO JOURNAL, 2000, 19 (07) : 1441 - 1449
  • [7] Protein misfolding and prion diseases
    Cohen, FE
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1999, 293 (02) : 313 - 320
  • [8] Pathologic conformations of prion proteins
    Cohen, FE
    Prusiner, SB
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 : 793 - +
  • [9] GROB M, 1999, PROTEIN SCI, V8, P1350
  • [10] Amyloid fibril formation by an SH3 domain
    Guijarro, JI
    Sunde, M
    Jones, JA
    Campbell, ID
    Dobson, CM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) : 4224 - 4228