Positive distribution description for spin states

被引:248
作者
Dodonov, VV
Manko, VI
机构
[1] Lebedev Physical Institute, Moscow 117924
关键词
D O I
10.1016/S0375-9601(97)00199-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a possibility of describing spin states in terms of a positive distribution function depending on continuous variables like Euler's angles. A spin state reconstruction procedure similar to the symplectic tomography is considered. A quantum evolution equation for the classical-like positive distribution function is found. Generalization to arbitrary values of angular momentum is discussed. (C) Published by Elsevier Science B.V.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 33 条
[1]  
AGARWAL GS, 1981, PHYS REV A, V24, P2889, DOI 10.1103/PhysRevA.24.2889
[2]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[3]  
Band W., 1971, F PHYS, V1, P339, DOI [10.1007/BF00708584, DOI 10.1007/BF00708584]
[4]  
BAND W, 1970, F PHYS, V1, P211
[5]  
Band W., 1970, FOUND PHYS, V1, P133
[6]   A TOMOGRAPHIC APPROACH TO WIGNER FUNCTION [J].
BERTRAND, J ;
BERTRAND, P .
FOUNDATIONS OF PHYSICS, 1987, 17 (04) :397-405
[7]  
BIEDENHARN LC, 1981, ENCY MATH ITS APPLIC, V8
[8]   DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1882-+
[9]   JOINT WIGNER DISTRIBUTION FOR SPIN-1/2 PARTICLES [J].
COHEN, L ;
SCULLY, MO .
FOUNDATIONS OF PHYSICS, 1986, 16 (04) :295-310
[10]   Reconstructing the density operator by using generalized field quadratures [J].
DAriano, GM ;
Mancini, S ;
Manko, VI ;
Tombesi, P .
QUANTUM AND SEMICLASSICAL OPTICS, 1996, 8 (05) :1017-1027