Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition

被引:62
作者
Markel, VA [1 ]
Mital, V
Schotland, JC
机构
[1] Washington Univ, Dept Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Dept Elect Engn, St Louis, MO 63130 USA
关键词
D O I
10.1364/JOSAA.20.000890
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We continue our study of the inverse scattering problem for diffuse light. In particular, we derive inversion formulas for this problem that are based on the functional singular-value decomposition of the linearized forward-scattering operator in the slab, cylindrical, and spherical geometries. Computer simulations are used to illustrate our results in model systems. (C) 2003 Optical Society of America.
引用
收藏
页码:890 / 902
页数:13
相关论文
共 9 条
[1]   BOUNDARY-CONDITIONS FOR DIFFUSION OF LIGHT [J].
ARONSON, R .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (11) :2532-2539
[2]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[3]   Inverse problem in optical diffusion tomography. II. Role of boundary conditions [J].
Markel, VA ;
Schotland, JC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (03) :558-566
[4]   Inverse scattering for the diffusion equation with general boundary conditions [J].
Markel, VA ;
Schotland, JC .
PHYSICAL REVIEW E, 2001, 64 (03) :4
[5]   Inverse problem in optical diffusion tomography. I. Fourier-Laplace inversion formulas [J].
Markel, VA ;
Schotland, JC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (06) :1336-1347
[6]  
Natterer F., 1986, The Mathematics of Computerized Tomography
[7]   Inverse scattering with diffusing waves [J].
Schotland, JC ;
Markel, VA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (11) :2767-2777
[8]  
P SPIE
[9]  
2002, OSA TRENDS OPTICS PH, V71