Can Big Data Solve the Fundamental Problem of Causal Inference?

被引:22
作者
Titiunik, Rocio [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
SELECTION;
D O I
10.1017/S1049096514001772
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
引用
收藏
页码:75 / 79
页数:5
相关论文
共 26 条
[1]  
[Anonymous], 2005, DATA MINING
[2]   High-Dimensional Methods and Inference on Structural and Treatment Effects [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Hansen, Christian .
JOURNAL OF ECONOMIC PERSPECTIVES, 2014, 28 (02) :29-50
[3]  
Belloni Alexandre, 2013, PROGRAM EVALUATION W
[4]   VALID POST-SELECTION INFERENCE [J].
Berk, Richard ;
Brown, Lawrence ;
Buja, Andreas ;
Zhang, Kai ;
Zhao, Linda .
ANNALS OF STATISTICS, 2013, 41 (02) :802-837
[5]  
Cattaneo M. D., 2012, WORKING PAPER
[6]  
Efron B., 2010, Large-scale inference: empirical Bayes methods for estimation, testing, and prediction, V1
[7]  
Farrell Max H, 2014, WORKING PAPER
[8]  
Green D, 2012, FIELD EXPERIMENTS DE
[9]   Appropriators not Position Takers: The Distorting Effects of Electoral Incentives on Congressional Representation [J].
Grimmer, Justin .
AMERICAN JOURNAL OF POLITICAL SCIENCE, 2013, 57 (03) :624-642
[10]   Jackknife and analytical bias reduction for nonlinear panel models [J].
Hahn, J ;
Newey, W .
ECONOMETRICA, 2004, 72 (04) :1295-1319