Extreme throat initial data set and horizon area-angular momentum inequality for axisymmetric black holes

被引:13
作者
Dain, Sergio [1 ,2 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, Inst Fis Enrique Gaviola, CONICET, RA-5000 Cordoba, Argentina
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 10期
关键词
MASS INEQUALITY; PROOF;
D O I
10.1103/PhysRevD.82.104010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a formula that relates the variations of the area of extreme throat initial data with the variation of an appropriate defined mass functional. From this expression we deduce that the first variation, with fixed angular momentum, of the area is zero and the second variation is positive definite evaluated at the extreme Kerr throat initial data. This indicates that the area of the extreme Kerr throat initial data is a minimum among this class of data. And hence the area of generic throat initial data is bounded from below by the angular momentum. Also, this result strongly suggests that the inequality between area and angular momentum holds for generic asymptotically flat axially symmetric black holes. As an application, we prove this inequality in the nontrivial family of spinning Bowen-York initial data.
引用
收藏
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 2003, CAMBRIDGE MONOGRAPHS, DOI DOI 10.1017/CBO9780511535185
[2]  
Arnowitt R., 1962, Gravitation: An Introduction to Current Research, P227
[3]   Asymptotic structure of symmetry-reduced general relativity [J].
Ashtekar, A ;
Bicak, J ;
Schmidt, BG .
PHYSICAL REVIEW D, 1997, 55 (02) :669-686
[4]  
Bardeen J, 1999, PHYS REV D, V60, DOI 10.1103/PhysRevD.60.104030
[5]  
Bartnik R, 2004, EINSTEIN EQUATIONS AND THE LARGE SCALE BEHAVIOR OF GRAVITATIONAL FIELDS - 50 YEARS OF THE CAUCHY PROBLEM IN GENERAL RELATIVITY, P1
[6]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[7]   Killing initial data [J].
Beig, R ;
Chrusciel, PT .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A83-A92
[8]   Extremality conditions for isolated and dynamical horizons [J].
Booth, Ivan ;
Fairhurst, Stephen .
PHYSICAL REVIEW D, 2008, 77 (08)
[9]   TIME-ASYMMETRIC INITIAL DATA FOR BLACK-HOLES AND BLACK-HOLE COLLISIONS [J].
BOWEN, JM ;
YORK, JW .
PHYSICAL REVIEW D, 1980, 21 (08) :2047-2056
[10]   AXISYMMETRIC BLACK HOLE HAS ONLY 2 DEGREES OF FREEDOM [J].
CARTER, B .
PHYSICAL REVIEW LETTERS, 1971, 26 (06) :331-+