Optical flow estimation using wavelet motion model

被引:36
作者
Wu, YT [1 ]
Kanade, T [1 ]
Cohn, J [1 ]
Li, CC [1 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
来源
SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION | 1998年
关键词
D O I
10.1109/ICCV.1998.710837
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A motion estimation algorithm using wavelet approximation as an optical flow model has been developed to estimate accurate dense optical flow from an image sequence. This wavelet motion model is particularly useful in estimating optical flows with large displacement. Traditional pyramid methods which use the coarse-to-fine image pyramid by image burring in estimating optical pour often produce incorrect results when the coarse-level estimates contain large errors that cannot be corrected at the subsequent finer levels. This happens when regions of lour texture become pat or certain patterns result in spatial aliasing due to image blurring. Our method, in contrast, uses large-to-small full-resolution regions without blurring images, and simultaneously optimizes the coarser and finer parts of optical pour so that the large and small motion can be estimated correctly. We compare results obtained by using our method with those obtained by using one of the leading optical flow methods, the Szeliski pyramid spline-based method. The experiments include cases of small displacement (less than 4 pixels under 128 x 128 image size or equivalent displacement under other image sizes) and those of large displace ment (10 pixels). While both methods produce comparable results when the displacements ore small, our method outperforms pyramid spline-based method when the displacements are large.
引用
收藏
页码:992 / 998
页数:7
相关论文
empty
未找到相关数据