What do we know about the metropolis algorithm?

被引:88
作者
Diaconis, P [1 ]
Saloff-Coste, L
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Univ Toulouse 3, CNRS, F-31062 Toulouse, France
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcss.1998.1576
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Metropolis algorithm is a widely used procedure for sampling from a specified distribution on a large finite set. We survey what is rigorously known about running times. This includes work from statistical physics, computer science, probability, and statistics. Some new results (Propositions 6.1-6.5) are given as an illustration of the geometric theory of Markov chains. (C) 1998Academic Press.
引用
收藏
页码:20 / 36
页数:17
相关论文
共 47 条
[1]  
[Anonymous], CONT MATH
[2]  
Barletta N., 1995, PROBABILITY PHASE TR, P265
[3]  
Belsley E.D., 1993, Ph.D. thesis
[4]  
Chung F, 1997, C BOARD MATH SCI AM
[5]  
Chung F. R. K., 1995, COMB PROBAB COMPUT, V4, P11, DOI DOI 10.1017/S0963548300001449
[6]  
CRITCHLOW D, 1985, SPRINGER LECT NOTE B, V4
[7]   L-2 CONVERGENCE OF TIME NONHOMOGENEOUS MARKOV PROCESSES: I. SPECTRAL ESTIMATES [J].
Deuschel, Jean-Dominique ;
Mazza, Christian .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :1012-1056
[8]  
Diaconis P, 1996, ANN APPL PROBAB, V6, P695
[9]   Nash inequalities for finite Markov chains [J].
Diaconis, P ;
SaloffCoste, L .
JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (02) :459-510
[10]  
Diaconis P., 1988, GROUP REPRESENTATION