Finite volume schemes for dispersive wave propagation and runup

被引:71
作者
Dutykh, Denys [1 ]
Katsaounis, Theodoros [2 ,3 ]
Mitsotakis, Dimitrios [4 ]
机构
[1] Univ Savoie, CNRS, LAMA, UMR 5127, F-73376 Le Bourget Du Lac, France
[2] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[3] FORTH, Inst App & Comp Math IACM, Iraklion 71110, Greece
[4] Univ Paris 11, UMR Math, F-91405 Orsay, France
关键词
Finite volume method; Dispersive waves; Solitary waves; Runup; Water waves; DISCONTINUOUS GALERKIN METHODS; BOUSSINESQ-TYPE EQUATIONS; BOUNDARY-VALUE-PROBLEMS; AMPLITUDE LONG WAVES; NUMERICAL-ANALYSIS; CONSERVATION-LAWS; 2-WAY PROPAGATION; WATER-WAVES; SYSTEMS; TSUNAMI;
D O I
10.1016/j.jcp.2011.01.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3035 / 3061
页数:27
相关论文
共 79 条
[2]  
Anastasiou K, 1997, INT J NUMER METH FL, V24, P1225, DOI 10.1002/(SICI)1097-0363(19970615)24:11<1225::AID-FLD540>3.0.CO
[3]  
2-D
[4]   Numerical solution of Boussinesq systems of the Bona-Smith family [J].
Antonopoulos, D. C. ;
Dougalis, V. A. ;
Mitsotakis, D. E. .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (04) :314-336
[5]  
Antonopoulos DC, 2009, ADV DIFFERENTIAL EQU, V14, P27
[6]  
ANTONOPOULOS DC, NUMERICAL SOLU UNPUB
[7]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[8]   A high-order Petrov-Galerkin finite element method for the classical Boussinesq wave model [J].
Avilez-Valente, Paulo ;
Seabra-Santos, Femando J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (09) :969-1010
[9]   On the shoreline boundary conditions for Boussinesq-type models [J].
Bellotti, G ;
Brocchini, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 37 (04) :479-500
[10]   HAMILTONIAN-STRUCTURE, SYMMETRIES AND CONSERVATION-LAWS FOR WATER-WAVES [J].
BENJAMIN, TB ;
OLVER, PJ .
JOURNAL OF FLUID MECHANICS, 1982, 125 (DEC) :137-185