A note on nonparametric estimation of the effective dose in quantal bioassay

被引:30
作者
Dette, H [1 ]
Neumeyer, N [1 ]
Pilz, KF [1 ]
机构
[1] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
关键词
binary response model; effective dose level; isotonic regression; local linear regression; nonparametric regression; order-restricted inference;
D O I
10.1198/016214504000001493
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the common binary response model, we propose a direct method for the nonparametric estimation of the effective dose level. The estimator is obtained by the composition of a nonparametric estimate of the quantile response curve and a classical density estimate. The new method yields a simple and reliable monotone estimate of the effective dose-level curve alpha -> EDalpha and is appealing to users of conventional smoothing methods as kernel estimators, local polynomials. series estimators, or smoothing splines. Moreover. it is computationally very efficient, because it does not require a numerical inversion of a monotonized estimate of the quantile dose-response curve. We prove asymptotic normality of the new estimate and compare it with an available alternative estimate (based on a monotonized nonparametric estimate of the dose-response curve and calculation of the inverse function) by means of a simulation study.
引用
收藏
页码:503 / 510
页数:8
相关论文
共 19 条
[1]  
Agresti A., 1990, Analysis of categorical data
[2]  
Barlow R. E., 1972, STAT INFERENCE ORDER
[3]   Application of the logistic function to bio-assay [J].
Berkson, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1944, 39 (227) :357-365
[4]   The method of probits [J].
Bliss, C. I. .
SCIENCE, 1934, 79 (2037) :38-39
[5]   MAXIMUM LIKELIHOOD ESTIMATES OF MONOTONE PARAMETERS [J].
BRUNK, HD .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04) :607-616
[6]  
DETTE H, 2003, SIMPLE NONPARAMETRIC
[7]  
Fan J., 1996, LOCAL POLYNOMIAL MOD
[8]  
GASSER T, 1985, J ROY STAT SOC B MET, V47, P238
[9]  
Gasser Th., 1979, KERNEL ESTIMATION RE, P23
[10]  
LEE E T, 1974, Computer Programs in Biomedicine, V4, P80, DOI 10.1016/0010-468X(74)90011-7