(N,F)-Co-doped TiO2: synthesis, anatase-rutile conversion and Li-cycling properties

被引:48
作者
Cherian, Christie T. [1 ]
Reddy, M. V. [1 ]
Magdaleno, Travis [2 ]
Sow, Chorng-Haur [1 ]
Ramanujachary, K. V. [2 ]
Rao, G. V. Subba [1 ]
Chowdari, B. V. R. [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Rowan Univ, Dept Chem & Biochem, Glassboro, NJ 08028 USA
来源
CRYSTENGCOMM | 2012年 / 14卷 / 03期
关键词
LITHIUM-ION BATTERIES; VISIBLE-LIGHT; PHOTOCATALYTIC ACTIVITY; NEGATIVE ELECTRODE; TITANIUM-OXIDES; RAMAN-SPECTRUM; NITROGEN; POWDERS; STORAGE; REACTIVITY;
D O I
10.1039/c1ce05685a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen and fluorine co-doped Ti-oxide, TiO1.9N0.05F0.15 (TiO2(N,F)), with the anatase structure is prepared by the pyro-ammonolysis of TiF3. For the first time it is shown that TiO2(N,F) and anatase-TiO2 are converted to nanosize-rutile structure by high energy ball milling (HEB). The polymorphs are characterised by X-ray diffraction, Rietveld refinement, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Raman spectra. The Li storage and cycling properties are examined by galvanostatic cycling and cyclic voltammetry in the voltage range 1-2.8 V vs. Li at 30 mA g(-1). The performance of TiO2(N,F) is much better than pure anatase-TiO2 and showed a reversible capacity of 95 (+/- 3) mA h g(-1) stable up to 25 cycles with a coulombic efficiency of similar to 98%. Nano-phase rutile TiO2(N,F) showed an initial reversible capacity of 210 mA h g(-1) which slowly degraded to 165 (+/- 3) mA h g(-1) after 50 cycles and stabilised between the 50th and 60th cycle whereas the nano-phase rutile-TiO2 (prepared by HEB of anatase-TiO2) exhibited a reversible capacity of 130 (+/- 3) mA h g(-1) which is stable in the range, 10-60 cycles. The crystal structure of anatase TiO2(N,F) is not destroyed upon Li-cycling and is confirmed by ex situ XRD and HR-TEM.
引用
收藏
页码:978 / 986
页数:9
相关论文
共 30 条
[1]   TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte [J].
Armstrong, Graham ;
Armstrong, A. Robert ;
Bruce, Peter G. ;
Reale, Priscilla ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2006, 18 (19) :2597-+
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature [J].
Baudrin, E. ;
Cassaignon, S. ;
Koesch, M. ;
Jolivet, J. -P. ;
Dupont, L. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) :337-342
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Nano-composites SnO(VOx) as anodes for lithium ion batteries [J].
Das, B. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (02) :259-268
[6]   High lithium electroactivity of nanometer-sized rutile TiO2 [J].
Hu, Yong-Sheng ;
Kienle, Lorenz ;
Guo, Yu- Guo ;
Maier, Joachim .
ADVANCED MATERIALS, 2006, 18 (11) :1421-+
[7]   Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films [J].
Irie, H ;
Washizuka, S ;
Yoshino, N ;
Hashimoto, K .
CHEMICAL COMMUNICATIONS, 2003, (11) :1298-1299
[8]   Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders [J].
Irie, H ;
Watanabe, Y ;
Hashimoto, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (23) :5483-5486
[9]   Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage [J].
Jiang, Chunhai ;
Honma, Itaru ;
Kudo, Tetsuichi ;
Zhou, Haoshen .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (05) :A127-A129
[10]   Mesoporous Anatase TiO2 with High Surface Area and Controllable Pore Size by F--Ion Doping: Applications for High-Power Li-lon Battery Anode [J].
Jung, Hun-Gi ;
Yoon, Chong Seung ;
Prakash, Jai ;
Sun, Yang-Kook .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (50) :21258-21263