Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown

被引:177
作者
Nag, Sukriti
Venugopalan, Roopa
Stewart, Duncan J.
机构
[1] Banting & Best Inst, Dept Lab Med & Pathobiol, Toronto, ON M5G 1L5, Canada
[2] Univ Toronto, St Michaels Hosp, Terrance Donnelly Heart Ctr, Toronto, ON, Canada
[3] Univ Toronto, Univ Hlth Network, Toronto Western Res Inst, Toronto, ON, Canada
关键词
blood-brain barrier; caveolae; caveolin-1; claudin-5; occludin; cold-injury; tight junctions;
D O I
10.1007/s00401-007-0274-x
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The significance of caveolin-1, a major constituent of caveolae, and the tight junction proteins occludin and claudin-5 in early blood-brain barrier (BBB) breakdown was assessed by sequential demonstration of the expression of these proteins over a period of 12 h to 6 days post-lesion in the rat cortical cold injury model. Pial and intracerebral vessels of control rats showed punctuate endothelial immunoreactivity for caveolin-1 and caveolin-2, while claudin-5 and occludin were localized as longitudinal strands in endothelium. During the early phase of BBB breakdown following injury at 12 h and on day 2, western blot analyses detected a significant increase in caveolin-1 expression at the lesion site while immunohistochemistry showed that the caveolin-1 increase was localized to the endothelium of lesion vessels. Decreased expression of occludin occurred at the lesion site only on days 2 and 4 post-lesion while claudin-5 expression was decreased only on day 2. Dual labeling for fibronectin, a marker of BBB breakdown, and caveolin-1 or the tight junction proteins demonstrated that only lesion vessels with BBB breakdown showed a marked increase of caveolin-1, loss of occludin and reduced localization of claudin-5. The issue whether these alterations precede or follow BBB breakdown is uncertain; however, increased expression of caveolin-1 preceded the decreased expression of occludin and claudin-5. Thus caveolae and caveolin-1 have an important role in early BBB breakdown and could be potential therapeutic targets in the control of early brain edema.
引用
收藏
页码:459 / 469
页数:11
相关论文
共 49 条
[1]   Gamma-ray irradiation stimulates the expression of caveolin-1 and GFAP in rat spinal cord: a study of immunoblot and immunohistochemistry [J].
Ahn, Meejung ;
Kim, Heechul ;
Kim, Jeong The ;
Lee, Jeeyoung ;
Hyun, Jin Won ;
Park, Jae Woo ;
Shin, Taekyun .
JOURNAL OF VETERINARY SCIENCE, 2006, 7 (04) :309-314
[2]   POTOCYTOSIS - SEQUESTRATION AND TRANSPORT OF SMALL MOLECULES BY CAVEOLAE [J].
ANDERSON, RGW ;
KAMEN, BA ;
ROTHBERG, KG ;
LACEY, SW .
SCIENCE, 1992, 255 (5043) :410-411
[3]   Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter [J].
Ballabh, P ;
Hu, FO ;
Kumarasiri, M ;
Braun, A ;
Nedergaard, M .
PEDIATRIC RESEARCH, 2005, 58 (04) :791-798
[4]   Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo [J].
Bolton, SJ ;
Anthony, DC ;
Perry, VH .
NEUROSCIENCE, 1998, 86 (04) :1245-1257
[5]   Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells [J].
Boyd, NL ;
Park, H ;
Yi, H ;
Boo, YC ;
Sorescu, GP ;
Sykes, M ;
Jo, H .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2003, 285 (03) :H1113-H1122
[6]   Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis [J].
Dallasta, LM ;
Pisarov, LA ;
Esplen, JE ;
Werley, JV ;
Moses, AV ;
Nelson, JA ;
Achim, CL .
AMERICAN JOURNAL OF PATHOLOGY, 1999, 155 (06) :1915-1927
[7]   A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts [J].
Furuse, M ;
Sasaki, H ;
Fujimoto, K ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1998, 143 (02) :391-401
[8]   CNS myelin and Sertoli cell tight junction strands are absent in Osp/Claudin-11 null mice [J].
Gow, A ;
Southwood, CM ;
Li, JS ;
Pariali, M ;
Riordan, GP ;
Brodie, SE ;
Danias, J ;
Bronstein, JM ;
Kachar, B ;
Lazzarini, RA .
CELL, 1999, 99 (06) :649-659
[9]  
Hirase T, 1997, J CELL SCI, V110, P1603
[10]   Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier [J].
Huber, JD ;
Egleton, RD ;
Davis, TP .
TRENDS IN NEUROSCIENCES, 2001, 24 (12) :719-725