Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques

被引:146
作者
Guenther, A
Baugh, W
Davis, K
Hampton, G
Harley, P
Klinger, L
Vierling, L
Zimmerman, P
Allwine, E
Dilts, S
Lamb, B
Westberg, H
Baldocchi, D
Geron, C
Pierce, T
机构
[1] WASHINGTON STATE UNIV, DEPT CIVIL & ENVIRONM ENGN, PULLMAN, WA 99164 USA
[2] NOAA, DIV ATMOSPHER TURBULENCE & DIFFUS, OAK RIDGE, TN 37830 USA
[3] US EPA, OFF RES & DEV, RES TRIANGLE PK, NC 27711 USA
关键词
D O I
10.1029/96JD00697
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Isoprene fluxes were estimated using eight different measurement techniques at a forested site near Oak Ridge, Tennessee, during July and August 1992. Fluxes from individual leaves and entire branches were estimated with four enclosure systems, including one system that controls leaf temperature and light. Variations in isoprene emission with changes in light, temperature, and canopy depth were investigated with leaf enclosure measurements. Representative emission rates for the dominant vegetation in the region were determined with branch enclosure measurements. Species from six tree genera had negligible Isoprene emissions, while significant emissions were observed for Quercus, Liquidambar, and Nyssa species. Above-canopy isoprene fluxes were estimated with surface layer gradients and relaxed eddy accumulation measurements from a 44-m tower. Midday net emission fluxes from the canopy were typically 3 to 5 mg C m(-2) h(-1), although net isoprene deposition fluxes of -0.2 to 2 mg C m(-2) h(-1) were occasionally observed in early morning and late afternoon. Above-canopy CO2 fluxes estimated by eddy correlation using either an open path sensor or a closed path sensor agreed within +/-5%. Relaxed eddy accumulation estimates of CO2 fluxes were within 15% of the eddy correlation estimates. Daytime isoprene mixing ratios in the mixed layer were investigated with a tethered balloon sampling system and ranged from 0.2 to 5 ppbv, averaging 0.8 ppbv. The isoprene mixing ratios in the mixed layer above the forested landscape were used to estimate isoprene fluxes of 2 to 8 mg C m(-2) h(-1) with mixed layer gradient and mixed layer mass balance techniques. Total foliar density and dominant tree species composition for an approximately 8100 km(2) region were estimated using high-resolution (30 m) satellite data with classifications supervised by ground measurements. A biogenic isoprene emission model used to compare flux measurements, ranging from leaf scale (10 cm(2)) to landscape scale (10(2) km(2)), indicated agreement to within +/-25%, the uncertainty associated with these measurement techniques. Existing biogenic emission models use isoprene emission rate capacities that range from 14.7 to 70 mu g C g(-1) h(-1) (leaf temperature of 30 degrees C and photosynthetically active radiation of 1000 mu mol m(-2) s(-1)) for oak foliage. An isoprene emission rate capacity of 100 mu g C g(-1) h(-1) for oaks in this region is more realistic and is recommended, based on these measurements.
引用
收藏
页码:18555 / 18567
页数:13
相关论文
共 23 条
[1]   GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC-COMPOUNDS - A REVIEW [J].
ATKINSON, R .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1990, 24 (01) :1-41
[2]  
Baldlcchi D, 1995, PHILOS T R SOC LON A, V350, P279
[3]  
BUSINGER JA, 1990, J ATMOS OCEAN TECH, V7, P349, DOI 10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO
[4]  
2
[5]   REASSESSMENT OF BIOGENIC VOLATILE ORGANIC-COMPOUND EMISSIONS IN THE ATLANTA AREA [J].
GERON, CD ;
PIERCE, TE ;
GUENTHER, AB .
ATMOSPHERIC ENVIRONMENT, 1995, 29 (13) :1569-&
[6]   AN IMPROVED MODEL FOR ESTIMATING EMISSIONS OF VOLATILE ORGANIC-COMPOUNDS FROM FORESTS IN THE EASTERN UNITED-STATES [J].
GERON, CD ;
GUENTHER, AB ;
PIERCE, TE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D6) :12773-12791
[7]   SUB-PARTS PER BILLION DETECTION OF ISOPRENE USING A REDUCTION GAS DETECTOR WITH A PORTABLE GAS-CHROMATOGRAPH [J].
GREENBERG, JP ;
ZIMMERMAN, PR ;
TAYLOR, BE ;
SILVER, GM ;
FALL, R .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1993, 27 (16) :2689-2692
[8]   NATURAL VOLATILE ORGANIC-COMPOUND EMISSION RATE ESTIMATES FOR UNITED-STATES WOODLAND LANDSCAPES [J].
GUENTHER, A ;
ZIMMERMAN, P ;
WILDERMUTH, M .
ATMOSPHERIC ENVIRONMENT, 1994, 28 (06) :1197-1210
[9]   Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements [J].
Guenther, A ;
Zimmerman, P ;
Klinger, L ;
Greenberg, J ;
Ennis, C ;
Davis, K ;
Pollock, W ;
Westberg, H ;
Allwine, G ;
Geron, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D1) :1345-1359
[10]  
GUENTHER A, 1996, IN PRESS ECOL APPL