An analysis of some mixed-enhanced finite element for plane linear elasticity

被引:41
作者
Auricchio, F
da Veiga, LB
Lovadina, C
Reali, A
机构
[1] Univ Pavia, Dipartmento Matemat, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Meccan Strutturale, I-27100 Pavia, Italy
[3] IMATI, CNR, I-27100 Pavia, Italy
[4] Univ Pavia, European Sch Adv Studies Reduct Seism Risk, ROSE Sch, I-27100 Pavia, Italy
关键词
nearly-incompressible elasticity; displacement/pressure formulation; finite element methods; enhanced strain technique; nonconforming methods; error analysis;
D O I
10.1016/j.cma.2004.07.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper investigates Mixed-Enhanced Strain finite elements developed within the context of the u/p formulation for nearly incompressible linear elasticity problems. A rigorous convergence and stability analysis is detailed, providing also L-2-error estimates for the displacement field. Extensive numerical tests are developed, showing in particular the accordance of the computational results with the theoretical predictions. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:2947 / 2968
页数:22
相关论文
共 24 条
[1]   On the locking and stability of finite elements in finite deformation plane strain problems [J].
Armero, F .
COMPUTERS & STRUCTURES, 2000, 75 (03) :261-290
[2]  
Bathe K, 2007, Finite element procedures
[3]   Enhanced assumed strain elements and locking in membrane problems [J].
Braess, D .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 165 (1-4) :155-174
[4]  
BRAESS D, UNIFORM CONVERGENCE
[5]  
BRENNER SC, 1992, MATH COMPUT, V59, P321, DOI 10.1090/S0025-5718-1992-1140646-2
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[9]  
Hughes TJR., 2000, FINITE ELEMENT METHO
[10]   On the enhanced strain technique for elasticity problems [J].
Lovadina, C ;
Auricchio, F .
COMPUTERS & STRUCTURES, 2003, 81 (8-11) :777-787