Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation

被引:96
作者
Zhang, Guo-Xing
Lu, Xiao-Mei
Kimura, Shoji
Nishiyama, Akira
机构
[1] Kagawa Univ, Fac Med, Dept Pharmacol, Kagawa 7610793, Japan
[2] China Med Univ, Coll Basic Med Sci, Dept Pathophysiol, Shenyang 110001, Peoples R China
关键词
angiotensin II (Ang II); mitochondrial K-ATP channel; mitogen-activated protein kinase (MAPK); reactive oxygen species (ROS); preconditioning (PC);
D O I
10.1016/j.cardiores.2007.07.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Peptide hormone Angiotensin II (Ang II) activates NAD(P)H oxidase, via AT1 receptors leading to increased generation of reactive oxygen species (ROS), such as the superoxide anion (O-2(-)). As an important intracellular second messenger, ROS can activate many downstream signaling molecules, including mitogen-activated protein kinases (MAPK), protein tyrosine phosphatases, protein tyrosine kinases, and transcriptional factors. Activation of these signaling cascades is highly related to risk for cardiovascular diseases. Accumulating evidence reveals that membrane-bound NAD(P)H oxidase is the main source responsible for Ang II-induced ROS generation. However, recent novel findings suggest that Ang II stimulation induces opening of mitochondrial K-ATP channels, depolarizes mitochondrial potential (Delta Psi(M)), and further amplifies ROS generation from mitochondria, resulting in redox-sensitive activation of MAPK. In this review, we discuss the possible mechanisms of Ang II-induced cardiac pharmacological preconditioning (PC), and focus on the role of mitochondrial K-ATP channels, mitochondrial ROS production, and MAPK activation in response to Ang II stimulation. (C) 2007 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:204 / 212
页数:9
相关论文
共 141 条
[1]   NAD(P)H oxidases in rat basilar arterial endothelial cells [J].
Ago, T ;
Kitazono, T ;
Kuroda, J ;
Kumai, Y ;
Kamouchi, M ;
Ooboshi, H ;
Wakisaka, M ;
Kawahara, T ;
Rokutan, K ;
Ibayashi, S ;
Iida, M .
STROKE, 2005, 36 (05) :1040-1046
[2]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[3]   Specific role of the extracellular signal-regulated kinase pathway in angiotensin II-induced cardiac hypertrophy in vitro [J].
Aoki, H ;
Richmond, M ;
Izumo, S ;
Sadoshima, J .
BIOCHEMICAL JOURNAL, 2000, 347 :275-284
[4]   Postconditioning inhibits mitochondrial permeability transition [J].
Argaud, L ;
Gateau-Roesch, O ;
Raisky, O ;
Loufouat, J ;
Robert, D ;
Ovize, M .
CIRCULATION, 2005, 111 (02) :194-197
[5]   ADENOSINE 5'-TRIPHOSPHATE-SENSITIVE POTASSIUM CHANNELS [J].
ASHCROFT, FM .
ANNUAL REVIEW OF NEUROSCIENCE, 1988, 11 :97-118
[6]   NADPH oxidase: An update [J].
Babior, BM .
BLOOD, 1999, 93 (05) :1464-1476
[7]   The neutrophil NADPH oxidase [J].
Babior, BM ;
Lambeth, JD ;
Nauseef, W .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 397 (02) :342-344
[8]   A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes [J].
Bánfi, B ;
Molnár, G ;
Maturana, A ;
Steger, K ;
Hegedûs, B ;
Demaurex, N ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) :37594-37601
[9]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[10]   Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice [J].
Bendall, JK ;
Cave, AC ;
Heymes, C ;
Gall, N ;
Shah, AM .
CIRCULATION, 2002, 105 (03) :293-296