Redox-active cathode interphases in solid-state batteries

被引:240
作者
Koerver, Raimund [1 ,2 ]
Walther, Felix [1 ,2 ]
Ayguen, Isabel [1 ,2 ]
Sann, Joachim [1 ,2 ]
Dietrich, Christian [1 ,2 ]
Zeier, Wolfgang G. [1 ,2 ]
Janek, Juergen [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, Heinrich Buff Ring 16, D-35392 Giessen, Germany
关键词
LITHIUM SECONDARY BATTERIES; LI-ION BATTERY; LICOO2; ELECTRODE; COATED LICOO2; SULFIDE; CHALLENGES; CONDUCTOR; INTERFACE; MICROSTRUCTURE; LI10GEP2S12;
D O I
10.1039/c7ta07641j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid-state batteries are expected to provide a next-generation solution for energy storage. Employing fast conducting lithium thiophosphates as a replacement for liquid electrolytes in conventional lithium ion batteries has shown great promise, however, capacity fading and the underlying interfacial side reactions of thiophosphates and cathode active materials are not yet understood well. In this study, we charge solid-state batteries to different cut-off potentials and find the formation of a redox-active resistive layer in the solid electrolyte, which impedes the conductivity depending on the state-of-charge of the battery. Using electrochemical impedance spectroscopy as well as depth profiling with X-ray photoelectron spectroscopy we find a thick passivation layer at the current collector and decomposition products within the cathode composite. In addition, an in situ electrochemical experiment during X-ray photoelectron spectroscopy shows that the solid electrolyte is redox active at the cathode/solid electrolyte interface in solid-state batteries. This work highlights the importance of protecting interface layers at the current collector, and the influence of the resulting electric potential drop, as well as provides insight into the redox chemistry of lithium conducting thiophosphates.
引用
收藏
页码:22750 / 22760
页数:11
相关论文
共 51 条
[1]  
[Anonymous], J ELECTROCERAMICS
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Foix, Dominique ;
Viallet, Virgine ;
Seznec, Vincent ;
Dedryvere, Remi .
SOLID STATE IONICS, 2017, 300 :78-85
[4]  
BREC R, 1983, REV CHIM MINER, V20, P295
[5]   Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li2P2S6 [J].
Dietrich, Christian ;
Weber, Dominik A. ;
Culver, Sean ;
Senyshyn, Anatoliy ;
Sedlmaier, Stefan J. ;
Indris, Sylvio ;
Janek, Juergen ;
Zeier, Wolfgang G. .
INORGANIC CHEMISTRY, 2017, 56 (11) :6681-6687
[6]   Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li4P2S6 [J].
Dietrich, Christian ;
Sadowski, Marcel ;
Sicolo, Sabrina ;
Weber, Dominik A. ;
Sedlmaier, Stefan J. ;
Weldert, Kai S. ;
Indris, Sylvio ;
Albe, Karsten ;
Janek, Juergen ;
Zeier, Wolfgang G. .
CHEMISTRY OF MATERIALS, 2016, 28 (23) :8764-8773
[7]  
Gelius K., 1970, PHYS SCR, V2, P70
[8]   Rechargeable batteries: challenges old and new [J].
Goodenough, John B. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) :2019-2029
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion-Insertion Processes [J].
Hakari, Takashi ;
Deguchi, Minako ;
Mitsuhara, Kei ;
Ohta, Toshiaki ;
Saita, Kohei ;
Orikasa, Yuki ;
Uchimoto, Yoshiharu ;
Kowada, Yoshiyuki ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4768-4774