Posterior sampling with improved efficiency

被引:23
作者
Hanson, KM [1 ]
Cunningham, GS [1 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
MEDICAL IMAGING 1998: IMAGE PROCESSING, PTS 1 AND 2 | 1998年 / 3338卷
关键词
adaptive Markov Chain Monte Carlo; statistical efficiency; BFGS optimization; Bayesian analysis; uncertainty estimation;
D O I
10.1117/12.310914
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The Markov Chain Monte Carlo (MCMC) technique provides a means to generate a random sequence of model realizations that sample the posterior probability distribution of a Bayesian analysis. That sequence may be used to make inferences about the model uncertainties that derive from measurement uncertainties. This paper presents an approach to improving the efficiency of the Metropolis approach to MCMC by incorporating an approximation to the covariance matrix of the posterior distribution. The covariance matrix is approximated using the update formula from the BFGS quasi-Newton optimization algorithm. Examples are given for uncorrelated and correlated multidimensional Gaussian posterior distributions.
引用
收藏
页码:371 / 382
页数:12
相关论文
empty
未找到相关数据