Structure-function study of a heptad repeat positioned near the transmembrane domain of Sendai virus fusion protein which blocks virus-cell fusion

被引:43
作者
Ghosh, JK
Peisajovich, SG
Ovadia, M
Shai, Y [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
[2] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Zool, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1074/jbc.273.42.27182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A synthetic heptad repeat, SV-473, derived from Sendal virus fusion protein is a potent inhibitor of virus-cell fusion. In order to understand the mechanism of the inhibitory effect, we synthesized and fluorescently labeled SV-465, an extended version of SV-473 by one more heptad, its mutant peptide A(17,24)-SV-465, in which two heptadic leucines were substituted with two alanines, and its enatiomer D-SV-465, composed entirely of D-amino acids. Similar mutations in the homologous fusion protein of the Newcastle disease virus drastically reduced its activity. The data revealed that SV-465, but not A(17,24)-SV-465 or. its enantiomer, is highly active in inhibiting Sendai virus-induced hemolysis of red blood cells. None of the peptides interfere with the binding of virions to the target red blood cells as demonstrated by hemagglutinin assay. Fluorescence and circular dichroism (CD) spectroscopy indicated that: (i) only SV-465 could self-assemble in aqueous environment; (ii) only SV-465 could co-assemble with two other biologically active heptad repeats derived from Sendai virus fusion protein; (iii) SV-465 has a higher helical content than A(17,24)-SV-465 in solution, and (iv) all the peptides bind strongly to zwitterionic and negatively charged phospholipids. Polarized attenuated total reflection infrared spectroscopy revealed that they bound as monomers onto the surface of zwitterionic membranes with predominantly alpha-helical structures. The functional role of the amino acid 465-497 domain in Sendai virus-mediated membrane fusion is discussed in light of these findings.
引用
收藏
页码:27182 / 27190
页数:9
相关论文
共 81 条
[1]  
BARTLETT GR, 1959, J BIOL CHEM, V234, P466
[2]   OLIGOMERIZATION OF THE HYDROPHOBIC HEPTAD REPEAT OF GP41 [J].
BERNSTEIN, HB ;
TUCKER, SP ;
KAR, SR ;
MCPHERSON, SA ;
MCPHERSON, DT ;
DUBAY, JW ;
LEBOWITZ, J ;
COMPANS, RW ;
HUNTER, E .
JOURNAL OF VIROLOGY, 1995, 69 (05) :2745-2750
[3]   IDENTIFICATION OF THE FUSION PEPTIDE OF PRIMATE IMMUNODEFICIENCY VIRUSES [J].
BOSCH, ML ;
EARL, PL ;
FARGNOLI, K ;
PICCIAFUOCO, S ;
GIOMBINI, F ;
WONGSTAAL, F ;
FRANCHINI, G .
SCIENCE, 1989, 244 (4905) :694-697
[4]   A LEUCINE ZIPPER STRUCTURE PRESENT IN THE MEASLES-VIRUS FUSION PROTEIN IS NOT REQUIRED FOR ITS TETRAMERIZATION BUT IS ESSENTIAL FOR FUSION [J].
BUCKLAND, R ;
MALVOISIN, E ;
BEAUVERGER, P ;
WILD, F .
JOURNAL OF GENERAL VIROLOGY, 1992, 73 :1703-1707
[5]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[6]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[7]   SEQUENCE-ANALYSIS OF THE GENE ENCODING THE FUSION GLYCOPROTEIN OF PNEUMONIA VIRUS OF MICE SUGGESTS POSSIBLE CONSERVED SECONDARY STRUCTURE ELEMENTS IN PARAMYXOVIRUS FUSION GLYCOPROTEINS [J].
CHAMBERS, P ;
PRINGLE, CR ;
EASTON, AJ .
JOURNAL OF GENERAL VIROLOGY, 1992, 73 :1717-1724
[8]   Core structure of gp41 from the HIV envelope glycoprotein [J].
Chan, DC ;
Fass, D ;
Berger, JM ;
Kim, PS .
CELL, 1997, 89 (02) :263-273
[9]   MUTATIONAL ANALYSIS OF THE LEUCINE ZIPPER-LIKE MOTIF OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 ENVELOPE TRANSMEMBRANE GLYCOPROTEIN [J].
CHEN, SSL ;
LEE, CN ;
LEE, WR ;
MCINTOSH, K ;
LEE, TH .
JOURNAL OF VIROLOGY, 1993, 67 (06) :3615-3619
[10]   FOLDING AND ASSEMBLY OF VIRAL MEMBRANE-PROTEINS [J].
DOMS, RW ;
LAMB, RA ;
ROSE, JK ;
HELENIUS, A .
VIROLOGY, 1993, 193 (02) :545-562