Giant enhancement of diffusion and particle selection in rocked periodic potentials

被引:77
作者
Schreier, M [1 ]
Reimann, P
Hanggi, P
Pollak, E
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[2] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
来源
EUROPHYSICS LETTERS | 1998年 / 44卷 / 04期
关键词
D O I
10.1209/epl/i1998-00488-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the motion of an overdamped Brownian particle in a periodic potential with weak thermal noise and a time-periodic unbiased (i.e. [F(t)]= 0) external driving force F(t). By introducing appropriate "waiting-periods", where F(t) vanishes, an arbitrarily strong enhancement of diffusion in a symmetric potential is possible. In asymmetric periodic potentials (ratchets) the net flux of particles can be directed in both directions, even in the absence of thermal noise. For finite temperatures we observe and explain additional, pure-noise-induced flux reversal phenomena.
引用
收藏
页码:416 / 422
页数:7
相关论文
共 15 条
[1]  
AJDARI A, 1994, J PHYS I, V4, P1551, DOI 10.1051/jp1:1994206
[2]   Thermodynamics and kinetics of a Brownian motor [J].
Astumian, RD .
SCIENCE, 1997, 276 (5314) :917-922
[3]   PERIODICALLY ROCKED THERMAL RATCHETS [J].
BARTUSSEK, R ;
HANGGI, P ;
KISSNER, JG .
EUROPHYSICS LETTERS, 1994, 28 (07) :459-464
[4]   STOCHASTIC RESONANCE FOR DISPERSION IN OSCILLATORY FLOWS [J].
CLAES, I ;
VANDENBROECK, C .
PHYSICAL REVIEW A, 1991, 44 (08) :4970-4977
[5]  
FACHEUX L, 1995, PHYS REV LETT, V74, P1504
[6]   Diffusion of periodically forced Brownian particles moving in space-periodic potentials [J].
Gang, H ;
Daffertshofer, A ;
Haken, H .
PHYSICAL REVIEW LETTERS, 1996, 76 (26) :4874-4877
[7]   Rectified motion of a mercury drop in an asymmetric structure [J].
Gorre, L ;
Ioannidis, E ;
Silberzan, P .
EUROPHYSICS LETTERS, 1996, 33 (04) :267-272
[8]  
GorreTalini L, 1997, J PHYS I, V7, P1475
[9]   Sorting of Brownian particles by the pulsed application of an asymmetric potential [J].
GorreTalini, L ;
Jeanjean, S ;
Silberzan, P .
PHYSICAL REVIEW E, 1997, 56 (02) :2025-2034
[10]  
Haenggi P., 1996, Nonlinear physics of complex systems. Current status and future trends, P294