Combining the triangle method with thermal inertia to estimate regional evapotranspiration - Applied to MSG-SEVIRI data in the Senegal River basin

被引:223
作者
Stisen, Simon [1 ]
Sandholt, Inge [1 ]
Norgaard, Anette [1 ]
Fensholt, Rasmus [1 ]
Jensen, Karsten Hogh [1 ]
机构
[1] Univ Copenhagen, Dept Geog & Geol, DK-1350 Copenhagen, Denmark
关键词
MSG SEVIRI; remote sensing; evaporative fraction; evapotranspiration; surface temperature; NDVI; thermal inertia; triangle method;
D O I
10.1016/j.rse.2007.08.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatially distributed estimates of evaporative fraction and actual evapotranspiration are pursued using a simple remote sensing technique based on a remotely sensed vegetation index (NDVI) and diumal changes in land surface temperature. The technique, known as the triangle method, is improved by utilizing the high temporal resolution of the geostationary MSG-SEVIRI sensor. With 15 min acquisition intervals, the MSG-SEVIRI data allow for a precise estimation of the morning rise in land surface temperature which is a strong proxy for total daytime sensible heat fluxes. Combining the diumal change in surface temperature, dT(s) with an interpretation of the triangular shaped dT(s)-NDVI space allows for a direct estimation of evaporative fraction. The mean daytime energy available for evapotranspiration (R. - G) is estimated using several remote sensors and limited ancillary data. Finally regional estimates of actual evapotranspiration are made by combining evaporative fraction and available energy estimates. The estimated evaporative fraction (EF) and actual evapotranspiration (ET) for the Senegal River basin have been validated against field observations for the rainy season 2005. The validation results showed low biases and RMSE and R-2 of 0.13 [-] and 0.63 for EF and RMSE of 41.45 W m(-2) and R-2 of 0.66 for ET. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1242 / 1255
页数:14
相关论文
共 78 条
[1]  
ABDELLAOUI A, 1986, J CLIM APPL METEOROL, V25, P1489, DOI 10.1175/1520-0450(1986)025<1489:UOMFMT>2.0.CO
[2]  
2
[3]   A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing [J].
Anderson, MC ;
Norman, JM ;
Diak, GR ;
Kustas, WP ;
Mecikalski, JR .
REMOTE SENSING OF ENVIRONMENT, 1997, 60 (02) :195-216
[4]  
BARRA N, 2006, REMOTE SENS ENVIRON, V103, P1
[5]  
Bastiaanssen WGM, 1998, J HYDROL, V212, P213, DOI [10.1016/S0022-1694(98)00254-6, 10.1016/S0022-1694(98)00253-4]
[6]   Modifications of the Heliosat procedure for irradiance estimates from satellite images [J].
Beyer, HG ;
Costanzo, C ;
Heinemann, D .
SOLAR ENERGY, 1996, 56 (03) :207-212
[7]   Remote sensing based estimation of evapotranspiration rates [J].
Boegh, E ;
Soegaard, H .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (13) :2535-2551
[8]   Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance [J].
Boegh, E ;
Soegaard, H ;
Thomsen, A .
REMOTE SENSING OF ENVIRONMENT, 2002, 79 (2-3) :329-343
[9]  
Brotzge JA, 2000, J APPL METEOROL, V39, P102, DOI 10.1175/1520-0450(2000)039&lt
[10]  
0102:ESHFFT&gt