Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish

被引:453
作者
Meijer, AH
Krens, SFG
Rodriguez, IAM
He, SN
Bitter, W
Snaar-Jagalska, BE
Spaink, HP
机构
[1] Leiden State Univ, Inst Biol, NL-2333 AL Leiden, Netherlands
[2] Vrije Univ Amsterdam, Ctr Med, Dept Med Microbiol, NL-1081 BT Amsterdam, Netherlands
关键词
innate immunity; mycobacterium; MyD88; TLR; zebrafish;
D O I
10.1016/j.molimm.2003.10.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The zebrafish genomic sequence database was analysed for the presence of genes encoding members of the Toll-like receptors (TLR) and interleukin receptors (IL-R) and associated adaptor proteins containing a TIR domain. The resulting predictions show the presence of one or more counterparts for the human TLR1, TLR2, TLR3, TLR4, TLR5, TLR7, TLR8, TLR9, IL- 1R and IL18R genes and one copy of the adaptor genes MyD88, MAL, TRIF and SARM. In contrast to data for the pufferfish Fugu rubripes, zebrafish has two genes that are highly similar to human TLR4. In addition, one fish-specific TLR group can be distinguished that is closely related to the Drosopohila melanogaster Toll-9 gene. The sequence of cloned cDNAs for TLR4, TLR2 and MyD88 show the same intron-exon organisation as in the human counterparts. Expression analysis using reverse transcriptase-PCR (RT-PCR) shows that 17 of the predicted zebrafish TLR genes and all the genes encoding adaptor proteins are expressed in the adult stage. A subset of the TLR genes are expressed at higher levels in fish infected with the pathogen Mycobacterium marinium. The induced genes include the homologues of the human TLR1 and TLR2 genes, whose functions are associated with mycobacterial infections, underscoring the suitability of zebrafish as a model for analysis of the vertebrate innate immune system. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:773 / 783
页数:11
相关论文
共 46 条
[1]   Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice [J].
Abel, B ;
Thieblemon, N ;
Quesniaux, VJF ;
Brown, N ;
Mpagi, J ;
Miyake, K ;
Bihl, F ;
Ryffel, B .
JOURNAL OF IMMUNOLOGY, 2002, 169 (06) :3155-3162
[2]   Toll-like receptors in the induction of the innate immune response [J].
Aderem, A ;
Ulevitch, RJ .
NATURE, 2000, 406 (6797) :782-787
[3]   Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-κB, ERK and p38 MAPK signal pathways [J].
An, HZ ;
Xu, HM ;
Yu, YZ ;
Zhang, MH ;
Qi, RZ ;
Yan, XY ;
Liu, SX ;
Wang, WY ;
Guo, ZH ;
Qin, ZH ;
Cao, XT .
IMMUNOLOGY LETTERS, 2002, 81 (03) :165-169
[4]  
Barton GM, 2002, CURR TOP MICROBIOL, V270, P81
[5]   Toll-like receptor signaling pathways [J].
Barton, GM ;
Medzhitov, R .
SCIENCE, 2003, 300 (5625) :1524-1525
[6]   A conserved signaling pathway: The Drosophila Toll-Dorsal pathway [J].
Belvin, MP ;
Anderson, KV .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :393-416
[7]  
Beutler B, 2002, CURR TOP MICROBIOL, V270, P1
[8]   Toll and Toll-like receptors in Drosophila [J].
Bilak, H ;
Tauszig-Delamasure, S ;
Imler, JL .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2003, 31 :648-651
[9]   Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors [J].
Brightbill, HD ;
Libraty, DH ;
Krutzik, SR ;
Yang, RB ;
Belisle, JT ;
Bleharski, JR ;
Maitland, M ;
Norgard, MV ;
Plevy, SE ;
Smale, ST ;
Brennan, PJ ;
Bloom, BR ;
Godowski, PJ ;
Modlin, RL .
SCIENCE, 1999, 285 (5428) :732-736
[10]   Toll-like receptors and T-helper-1/T-helper-2 responses [J].
Dabbagh, K ;
Lewis, DB .
CURRENT OPINION IN INFECTIOUS DISEASES, 2003, 16 (03) :199-204