Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models

被引:145
作者
Banerji, U [1 ]
Walton, M [1 ]
Raynaud, F [1 ]
Grimshaw, R [1 ]
Kelland, L [1 ]
Valenti, M [1 ]
Judson, I [1 ]
Workman, P [1 ]
机构
[1] Canc Res UK, Ctr Canc Therapeut, Inst Canc Res, Haddow Labs, Sutton SM2 5NG, Surrey, England
关键词
D O I
10.1158/1078-0432.CCR-05-0518
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To establish the pharmacokinetic and pharmacodynamic profile of the heat shock protein 90 (HSP90) inhibitor 17-allylamino, 17-demethoxygeldanamycin (17-AAG) in ovarian cancer xenograft models. Experimental Design: The effects of 17-AAG on growth inhibition and the expression of pharmacodynamic biomarkers c-RAF-1, CDK4, and HSP70 were studied in human ovarian cancer cell lines A2780 and CH1. Corresponding experiments Were conducted with established tumor xenografts. The variability and specificity of pharmacodynamic markers in human peripheral blood lymphocytes (PBL) were studied. Results: The IC50 values of 17-AAG in A2780 and CH1 cells were 18.3 nmol/L (SD, 2.3) and 410.1 nmol/L (SD, 9.4), respectively. Pharmacodynamic changes indicative of HSP90 inhibition were demonstrable at greater than or equal the IC50 concentration in both cell lines. Xenograft experiments confirmed tumor growth inhibition in vivo. Peak concentrations of 17-AAG achieved in A2780 and CH1 tumors were 15.6 and 16.5 mu mol/L, respectively, and there was no significant difference between day 1 and 11 pharmacokinetic profiles. Reversible changes in pharmacodynamic biomarkers were shown in tumor and murine PBLs in both xenograft models. Expression of pharmacodynamic markers varied between human PBLs from different human volunteers but not within the same individual. Pharmacodynamic biomarker changes consistent with HSP90 inhibition were shown in human PBLs exposed ex vivo to 17-AAG but not to selected cytotoxic drugs. Conclusion: Pharmacokinetic-pharmacodynamic relationships were established for 17-AAG. This information formed the basis of a pharmacokinetic-pharmacodynamic-driven phase I trial.
引用
收藏
页码:7023 / 7032
页数:10
相关论文
共 57 条
[1]   TESTING FOR THE EQUALITY OF AREA UNDER THE CURVES WHEN USING DESTRUCTIVE MEASUREMENT TECHNIQUES [J].
BAILER, AJ .
JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1988, 16 (03) :303-309
[2]   Phase I pharmacokinetic and pharmacodynarnic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies [J].
Banerji, U ;
O'Donnell, A ;
Scurr, M ;
Pacey, S ;
Stapleton, S ;
Asad, Y ;
Simmons, L ;
Maloney, A ;
Raynaud, F ;
Campbell, M ;
Walton, M ;
Lakhani, S ;
Kaye, S ;
Workman, P ;
Judson, I .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (18) :4152-4161
[3]  
BANERJI U, 2003, P AN M AM SOC CLIN, V22, P199
[4]   Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56lck [J].
Bijlmakers, MJJE ;
Marsh, M .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (05) :1585-1595
[5]   17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models [J].
Burger, AM ;
Fiebig, HH ;
Stinson, SF ;
Sausville, EA .
ANTI-CANCER DRUGS, 2004, 15 (04) :377-387
[6]   Hsp90: the vulnerable chaperone [J].
Chiosis, G ;
Vilenchik, M ;
Kim, J ;
Solit, D .
DRUG DISCOVERY TODAY, 2004, 9 (20) :881-888
[7]   Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of hsp90 molecular chaperone [J].
Clarke, PA ;
Hostein, I ;
Banerji, U ;
Di Stefano, F ;
Maloney, A ;
Walton, M ;
Judson, I ;
Workman, P .
ONCOGENE, 2000, 19 (36) :4125-4133
[8]   Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1 [J].
Egorin, MJ ;
Zuhowski, EG ;
Rosen, DM ;
Sentz, DL ;
Covey, JM ;
Eiseman, JL .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2001, 47 (04) :291-302
[9]  
ERLICHMAN C, 2004, P AM ASS CLIN ONC, V23, P202
[10]   Hsp90 regulates androgen receptor hormone binding affinity in vivo [J].
Fang, YF ;
Fliss, AE ;
Robins, DM ;
Caplan, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (45) :28697-28702