Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor

被引:59
作者
Wang, Y
Xu, L
Pasek, DA
Gillespie, D
Meissner, G [1 ]
机构
[1] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[2] Rush Univ, Med Ctr, Dept Mol Physiol & Biophys, Chicago, IL 60612 USA
关键词
D O I
10.1529/biophysj.104.056002
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Sequence comparison suggests that the ryanodine receptors (RyRs) have pore architecture similar to that of the bacterial K+ channel KcsA. The lumenal loop linking the two most C-terminal transmembrane spanning segments in the RyRs has a predicted pore helix and an amino acid motif (GGGIG) similar to the selectivity filter (TVGYG) of KcsA identified by x-ray analysis. The RyRs have many negatively charged amino acid residues in the two regions linking the GGGIG motif and predicted pore helix with the two most C-terminal transmembrane spanning segments. We tested the role of these residues by generating single-site mutants, focusing on amino acid residues conserved among the mammalian RyRs. Replacement of two acidic residues immediately after the GGGIG motif in skeletal muscle ryanodine receptor (RyR1-D4899 and -E4900) with asparagine and glutamine profoundly affected ion permeation and selectivity. By comparison, mutagenesis of aspartate and glutamate residues in the putative linker regions showed a K+ conductance and selectivity for Ca2+ compared to K+ (P-Ca/P-K) close to wild-type. The results show that the negatively charged carboxyl oxygens of D4899 and E4900 side chains are major determinants of RyR ion conductance and selectivity.
引用
收藏
页码:256 / 265
页数:10
相关论文
共 42 条
  • [1] Luminal loop of the ryanodine receptor: A pore-forming segment?
    Balshaw, D
    Gao, L
    Meissner, G
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) : 3345 - 3347
  • [2] Calcium ion permeation through the calcium release channel (ryanodine receptor) of cardiac muscle
    Chen, DP
    Xu, L
    Eisenberg, B
    Meissner, G
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (34) : 9139 - 9145
  • [3] Chen SRW, 2002, BIOPHYS J, V82, P2436, DOI 10.1016/S0006-3495(02)75587-2
  • [4] Altered ryanodine receptor function in central core disease:: Leaky or uncoupled Ca2+ release channels?
    Dirksen, RT
    Avila, G
    [J]. TRENDS IN CARDIOVASCULAR MEDICINE, 2002, 12 (05) : 189 - 197
  • [5] The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity
    Doyle, DA
    Cabral, JM
    Pfuetzner, RA
    Kuo, AL
    Gulbis, JM
    Cohen, SL
    Chait, BT
    MacKinnon, R
    [J]. SCIENCE, 1998, 280 (5360) : 69 - 77
  • [6] Topology of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyR1)
    Du, GG
    Sandhu, B
    Khanna, VK
    Guo, XH
    MacLennan, DH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) : 16725 - 16730
  • [7] Functional characterization of mutants in the predicted pore region of the rabbit cardiac muscle Ca2+ release channel (Ryanodine receptor isoform 2)
    Du, GG
    Guo, XH
    Khanna, VK
    MacLennan, DH
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) : 31760 - 31771
  • [8] Ryanodine receptor calcium release channels
    Fill, M
    Copello, JA
    [J]. PHYSIOLOGICAL REVIEWS, 2002, 82 (04) : 893 - 922
  • [9] Ryanodine receptors of striated muscles: A complex channel capable of multiple interactions
    FranziniArmstrong, C
    Protasi, F
    [J]. PHYSIOLOGICAL REVIEWS, 1997, 77 (03) : 699 - 729
  • [10] Evidence for a role of the lumenal M3-M4 loop in skeletal muscle Ca2+ release channel (ryanodine receptor) activity and conductance
    Gao, L
    Balshaw, D
    Xu, L
    Tripathy, A
    Xin, CL
    Meissner, G
    [J]. BIOPHYSICAL JOURNAL, 2000, 79 (02) : 828 - 840