Eigenstate structures around a hyperbolic point

被引:32
作者
Nonnenmacher, S
Voros, A
机构
[1] CEA - Saclay, Service de Physique Théorique, F-91191 Gif-sur-Yvette, CEDEX
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 01期
关键词
D O I
10.1088/0305-4470/30/1/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using coherent-state representations of quantum mechanics (Bargmann, Husimi, and stellar representations), we describe analytically the phase-space structure of the general eigenstates corresponding to a one-dimensional bilinear hyperbolic Hamiltonian, H = pq or equivalently H = 1/2(P-2 - Q(2)). Their semiclassical behaviour is discussed for eigenvalues either near or away from the separatrix energy {H = O}, especially in the phase-space vicinity of the saddle-point (q, p) = (0, 0).
引用
收藏
页码:295 / 315
页数:21
相关论文
共 24 条
[1]   WIGNERS FUNCTION AND TUNNELING [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1990, 199 (01) :123-140
[4]   SEMICLASSICAL QUANTIZATION RULES NEAR SEPARATRICES [J].
BLEHER, PM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :621-640
[5]  
Boas R. P., 1954, PURE APPL MATH, V5
[6]   SPECTRAL ESTIMATES AROUND A CRITICAL-LEVEL [J].
BRUMMELHUIS, R ;
PAUL, T ;
URIBE, A .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (03) :477-530
[7]   UNSTABLE EQUILIBRIUM IN A SEMICLASSICAL REGIME - MICROLOCAL CONCENTRATION [J].
DEVERDIERE, YC ;
PARISSE, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (9-10) :1535-1563
[8]  
DEVERDIERE YC, 1994, ANN I H POINCARE-PHY, V61, P347
[9]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[10]  
Husimi Kodi, 1940, PROC PHYS MATH SOC, V22, P3, DOI DOI 10.11429/PPMSJ1919.22.4_264