Linkage analysis of candidate regions using a composite neurocognitive phenotype correlated with schizophrenia

被引:41
作者
Hallmayer, JF
Jablensky, A
Michie, P
Woodbury, M
Salmon, B
Combrinck, J
Wichmann, H
Rock, D
D'Ercole, M
Howell, S
Dragovic, M
Kent, A
机构
[1] Stanford Univ, Sch Med, Dept Psychiat & Behav Sci, Palo Alto, CA 94304 USA
[2] Univ Western Australia, Sch Psychiat & Clin Neurosci, Perth, WA 6009, Australia
[3] Graylands Hosp, Ctr Clin Res Neuropsychiat, Perth, WA, Australia
[4] Western Australian Inst Med Res, Perth, WA, Australia
[5] Duke Univ, Ctr Demog Studies, Durham, NC 27706 USA
[6] Community Mental Hlth Ctr, Perth, WA, Australia
[7] Univ Western Australia, Sch Psychol, Perth, WA 6009, Australia
[8] Univ Newcastle, Sch Behav Sci, Newcastle, NSW 2308, Australia
基金
英国医学研究理事会;
关键词
schizophrenia; grade of membership analysis; genetic linkage; variance component analysis; correlated neurocognitive phenotypes; personality traits;
D O I
10.1038/sj.mp.4001273
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As schizophrenia is genetically and clinically heterogeneous, systematic investigations are required to determine whether ICD-10 or DSM-IV categorical diagnoses identify a phenotype suitable and sufficient for genetic research, or whether correlated phenotypes incorporating neurocognitive performance and personality traits provide a phenotypic characterisation that accounts better for the underlying variation. We utilised a grade of membership (GoM) model (a mathematical typology developed for studies of complex biological systems) to integrate multiple cognitive and personality measurements into a limited number of composite graded traits (latent pure types) in a sample of 61 nuclear families comprising 80 subjects with ICD-10/DSM-IV schizophrenia or schizophrenia spectrum disorders and 138 nonpsychotic first-degree relatives. GoM probability scores, computed for all subjects, allowed individuals to be partly assigned to more than one pure type. Two distinct and contrasting neurocognitive phenotypes, one familial, associated with paranoid schizophrenia, and one sporadic, associated with nonparanoid schizophrenia, accounted for 74% of the affected subjects. Combining clinical diagnosis with GoM scores to stratify the entire sample into liability classes, and using variance component analysis (SOLAR), in addition to parametric and nonparametric multipoint linkage analysis, we explored candidate regions on chromosomes 6, 10 and 22. The results indicated suggestive linkage for the familial neurocognitive phenotype (multipoint MLS 2.6 under a low-penetrance model and MLS>3.0 under a high-penetrance model) to a 14 cM area on chromosome 6, including the entire HLA region. Results for chromosomes 10 and 22 were negative. The findings suggest that the familial neurocognitive phenotype may be a pleiotropic expression of genes underlying the susceptibility to paranoid schizophrenia. We conclude that use of composite neurocognitive and personality trait measurements as correlated phenotypes supplementing clinical diagnosis can help stratify the liability to schizophrenia across all members of families prior to linkage, allow the search for susceptibility genes to focus selectively on subsets of families at high genetic risk, and augment considerably the power of genetic analysis.
引用
收藏
页码:511 / 523
页数:13
相关论文
共 111 条
[1]   Multipoint quantitative-trait linkage analysis in general pedigrees [J].
Almasy, L ;
Blangero, J .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 62 (05) :1198-1211
[2]  
ANDERSON MA, 1984, IN VITRO CELL DEV B, V20, P856
[3]  
ANTONARAKIS SE, 1995, NAT GENET, V11, P235, DOI 10.1038/ng1195-235
[4]  
Arolt V, 1996, AM J MED GENET, V67, P564, DOI 10.1002/(SICI)1096-8628(19961122)67:6<564::AID-AJMG10>3.0.CO
[5]  
2-R
[6]   Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia [J].
Badner, JA ;
Gershon, ES .
MOLECULAR PSYCHIATRY, 2002, 7 (04) :405-411
[7]   Genome scan for susceptibility loci for schizophrenia [J].
Bailer, U ;
Leisch, F ;
Meszaros, K ;
Lenzinger, E ;
Willinger, U ;
Strobl, R ;
Gebhardt, C ;
Gerhard, E ;
Fuchs, K ;
Sieghart, W ;
Kasper, S ;
Hornik, K ;
Aschauer, HN .
NEUROPSYCHOBIOLOGY, 2000, 42 (04) :175-182
[8]   Control of synaptic strength by glial TNFα [J].
Beattie, EC ;
Stellwagen, D ;
Morishita, W ;
Bresnahan, JC ;
Ha, BK ;
Von Zastrow, M ;
Beattie, MS ;
Malenka, RC .
SCIENCE, 2002, 295 (5563) :2282-2285
[9]  
Benton A. L., 1989, Multilingual aphasia examination
[10]   Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21 [J].
Blouin, JL ;
Dombroski, BA ;
Nath, SK ;
Lasseter, VK ;
Wolyniec, PS ;
Nestadt, G ;
Thornquist, M ;
Ullrich, G ;
McGrath, J ;
Kasch, L ;
Lamacz, M ;
Thomas, MG ;
Gehrig, C ;
Radhakrishna, U ;
Snyder, SE ;
Balk, KG ;
Neufeld, K ;
Swartz, KL ;
DeMarchi, N ;
Papadimitriou, GN ;
Dikeos, DG ;
Stefanis, CN ;
Chakravarti, A ;
Childs, B ;
Housman, DE ;
Kazazian, HH ;
Antonarakis, SE ;
Pulver, AE .
NATURE GENETICS, 1998, 20 (01) :70-73