Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers

被引:875
作者
Liu, Wei [1 ]
Liu, Nian [1 ]
Sun, Jie [1 ]
Hsu, Po-Chun [1 ]
Li, Yuzhang [1 ]
Lee, Hyun-Wook [1 ]
Cui, Yi [1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
关键词
Solid composite electrolyte; nunowires; polyacrylonitrile; ionic conductivity; POLY(ETHYLENE OXIDE); CONDUCTORS; IMPEDANCE;
D O I
10.1021/acs.nanolett.5b00600
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 x 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.
引用
收藏
页码:2740 / 2745
页数:6
相关论文
共 38 条
[1]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110
[2]  
Belous A., 1987, INORG MATER+, V23, P470, DOI [10.5281/zenodo.4074927, DOI 10.5281/ZENODO.4074927]
[3]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[4]   Nano-tube TiO2 composite PVdF/LiPF6 solid membranes [J].
Chiang, CY ;
Reddy, MJ ;
Chu, PP .
SOLID STATE IONICS, 2004, 175 (1-4) :631-635
[5]   Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li [J].
Chu, PP ;
Reddy, MJ ;
Kao, HM .
SOLID STATE IONICS, 2003, 156 (1-2) :141-153
[6]   Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides [J].
Chung, SH ;
Wang, Y ;
Persi, L ;
Croce, F ;
Greenbaum, SG ;
Scrosati, B ;
Plichta, E .
JOURNAL OF POWER SOURCES, 2001, 97-8 :644-648
[7]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[8]   Nanocomposite polymer electrolytes and their impact on the lithium battery technology [J].
Croce, F ;
Persi, L ;
Ronci, F ;
Scrosati, B .
SOLID STATE IONICS, 2000, 135 (1-4) :47-52
[9]   A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning [J].
Croce, Fausto ;
Focarete, Maria Letizia ;
Hassoun, Jusef ;
Meschini, Ida ;
Scrosati, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :921-927
[10]   Ceramic and polymeric solid electrolytes for lithium-ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4554-4569