High CO2 emissions through porous media:: transport mechanisms and implications for flux measurement and fractionation

被引:76
作者
Evans, WC
Sorey, ML
Kennedy, BM
Stonestrom, DA
Rogie, JD
Shuster, DL
机构
[1] US Geol Survey, Menlo Park, CA 94025 USA
[2] Lawrence Berkeley Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA
[3] Penn State Univ, University Pk, PA 16802 USA
关键词
CO2; soil gases; diffusion; advection; isotope fractionation;
D O I
10.1016/S0009-2541(00)00379-X
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux art: increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a rest system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of similar to 200-12,000 g m(-2) day(-1). 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of - 20 Pa/m was measured in the sand column at a flux of 11.200 g m (-2) day (-1). The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N-2/Ar, delta N-15-N-2, and He-4/Ne-22. Published by Elsevier Science B.V.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 40 条
[1]   Experimental assessment of gas transport mechanisms in natural porous media: Parameter evaluation [J].
AbuElShar, W ;
Abriola, LM .
WATER RESOURCES RESEARCH, 1997, 33 (04) :505-516
[2]   ERUPTIVE AND DIFFUSE EMISSIONS OF CO2 FROM MOUNT ETNA [J].
ALLARD, P ;
CARBONNELLE, J ;
DAJLEVIC, D ;
LEBRONEC, J ;
MOREL, P ;
ROBE, MC ;
MAURENAS, JM ;
FAIVREPIERRET, R ;
MARTIN, D ;
SABROUX, JC ;
ZETTWOOG, P .
NATURE, 1991, 351 (6325) :387-391
[3]   CHAMBER MEASUREMENT OF SOIL-ATMOSPHERE GAS-EXCHANGE - LINEAR VS DIFFUSION-BASED FLUX MODELS [J].
ANTHONY, WH ;
HUTCHINSON, GL ;
LIVINGSTON, GP .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1995, 59 (05) :1308-1310
[4]  
BADALAMENTI B, 1988, REND SOC IT MINER PE, V43, P893
[5]   DIFFUSE VOLCANIC EMISSIONS OF CARBON-DIOXIDE FROM VULCANO-ISLAND, ITALY [J].
BAUBRON, JC ;
ALLARD, P ;
TOUTAIN, JP .
NATURE, 1990, 344 (6261) :51-53
[6]  
BERGFELD D, 1998, EOS F, V79, P941
[7]   Soil CO2 flux measurements in volcanic and geothermal areas [J].
Chiodini, G ;
Cioni, R ;
Guidi, M ;
Raco, B ;
Marini, L .
APPLIED GEOCHEMISTRY, 1998, 13 (05) :543-552
[8]   Quantification of deep CO2 fluxes from Central Italy.: Examples of carbon balance for regional aquifers and of soil diffuse degassing [J].
Chiodini, G ;
Frondini, F ;
Kerrick, DM ;
Rogie, J ;
Parello, F ;
Peruzzi, L ;
Zanzari, AR .
CHEMICAL GEOLOGY, 1999, 159 (1-4) :205-222
[9]   Hydrothermal gas equilibria:: The H2O-H2-CO2-CO-CH4 system [J].
Chiodini, G ;
Marini, L .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1998, 62 (15) :2673-2687
[10]  
CURRIE J. A., 1970, "Sorption and Transport Processes in Soils". Monogr. Soc. Chem. Ind., P152