Chaotic properties of quantum many-body systems in the thermodynamic limit

被引:31
作者
JonaLasinio, G [1 ]
Presilla, C [1 ]
机构
[1] IST NAZL FIS NUCL,I-00185 ROME,ITALY
关键词
D O I
10.1103/PhysRevLett.77.4322
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using numerical simulations, we investigate the dynamics of a quantum system of interacting bosons. We find an increase of properly defined mixing properties when the number of particles increases at constant density or the interaction strength drives the system away from integrability. A correspondence with the dynamical chaoticity of an associated c-number system is then used to infer properties of the quantum system in the thermodynamic limit.
引用
收藏
页码:4322 / 4325
页数:4
相关论文
共 16 条
[1]   Quantum chaos, irreversible classical dynamics, and random matrix theory [J].
Andreev, AV ;
Agam, O ;
Simons, BD ;
Altshuler, BL .
PHYSICAL REVIEW LETTERS, 1996, 76 (21) :3947-3950
[2]  
Blaizot J.-P., 1986, Quantum Theory of Finite Systems
[3]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[4]  
BOHIGAS O, 1991, CHAOS QUANTUM PHYSIC
[5]  
CASTIGLIONE P, IN PRESS J PHYS A
[6]   TRANSIENT CHAOS IN QUANTUM AND CLASSICAL MECHANICS [J].
CHIRIKOV, BV .
FOUNDATIONS OF PHYSICS, 1986, 16 (01) :39-49
[7]  
Cornfeld I. P., 1982, Ergodic Theory
[8]   THE DISCRETE SELF-TRAPPING EQUATION [J].
EILBECK, JC ;
LOMDAHL, PS ;
SCOTT, AC .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 16 (03) :318-338
[9]   SPACE-TIME ERGODIC PROPERTIES OF SYSTEMS OF INFINITELY MANY INDEPENDENT PARTICLES [J].
GOLDSTEIN, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 39 (04) :303-327
[10]  
GRAFFI S, IN PRESS J MATH PHYS