A novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38α and β MAPKs

被引:136
作者
Tanoue, T
Yamamoto, T
Maeda, R
Nishida, E [1 ]
机构
[1] Kyoto Univ, Grad Sch Biostudies, Dept Cell & Dev Biol, Sakyo Ku, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Biophys, Sakyo Ku, Kyoto 6068502, Japan
关键词
D O I
10.1074/jbc.M101981200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitogen-activated protein kinases (MAPKs) are inactivated via dephosphorylation of either the threonine or tyrosine residue or both in the P-loop catalyzed by protein phosphatases which include serine/threonine phosphatases, tyrosine phosphatases, and dual specificity phosphatases. Nine members of the dual specificity phosphatases specific for MAPKs, termed MKPs, have been reported. Each member has its own substrate specificity, tissue distribution, and subcellular localization. In this study, we have cloned and characterized a novel MKP, designated MKP-7. MKP-7 is most similar to hVH5, a member of previously known MKPs, in the primary structure. MKP-7 is predominantly localized in the cytoplasm when expressed in cultured cells, whereas hVH5 is both in the nucleus and the cytoplasm, MKP-7 binds to and inactivates p38 MAPK and JNK/SAPK, but not ERK, Furthermore, we have found that MKPs have the substrate specificity toward the isoforms of the p38 family (alpha, beta, gamma, and delta). MKP-7 binds to and inactivates p38 alpha and -beta, but not gamma or delta. MKP-5 and CL100/MKP-1 also bind to p38 alpha and -beta, but not gamma or delta. Finally, we propose a tentative classification of MKPs based on the sequence characteristics of their MAPK-docking site.
引用
收藏
页码:26629 / 26639
页数:11
相关论文
共 58 条
[1]  
Ahn Natalie G., 1992, Current Opinion in Cell Biology, V4, P992, DOI 10.1016/0955-0674(92)90131-U
[2]  
ALESSI DR, 1993, ONCOGENE, V8, P2015
[3]   A conserved motif at the amino termini of MEKs might mediate high-affinity interaction with the cognate MAPKs [J].
Bardwell, L ;
Thorner, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (10) :373-374
[4]   A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase [J].
Blanco-Aparicio, C ;
Torres, J ;
Pulido, R .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1129-1135
[5]   Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase [J].
Camps, M ;
Nichols, A ;
Gillieron, C ;
Antonsson, B ;
Muda, M ;
Chabert, C ;
Boschert, U ;
Arkinstall, S .
SCIENCE, 1998, 280 (5367) :1262-1265
[6]   Dual specificity phosphatases: a gene family for control of MAP kinase function [J].
Camps, M ;
Nichols, A ;
Arkinstall, S .
FASEB JOURNAL, 2000, 14 (01) :6-16
[7]  
CHARLES CH, 1992, ONCOGENE, V7, P187
[8]   The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation [J].
Chu, YF ;
Solski, PA ;
KhosraviFar, R ;
Der, CJ ;
Kelly, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6497-6501
[9]   Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); Comparison of the specificities of SAPK3 and SAPK2 (RK/p38) [J].
Cuenda, A ;
Cohen, P ;
BueeScherrer, V ;
Goedert, M .
EMBO JOURNAL, 1997, 16 (02) :295-305
[10]   Signal transduction by the JNK group of MAP kinases [J].
Davis, RJ .
CELL, 2000, 103 (02) :239-252