Fast Fourier transform accelerated fast multipole algorithm

被引:49
作者
Elliott, WD
Board, JA
机构
[1] Duke University, Department of Electrical Engineering, Durham, NC 27706-0291
关键词
N-body problem; many-body problem; fast multipole algorithm; fast multipole method; tree codes; molecular dynamics; fast Fourier transform;
D O I
10.1137/S1064827594264259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes an O(p(2)log(2)(p)N) implementation of the fast multipole algorithm (FMA) for N-body simulations. This method of computing the FMA is faster than the original, which is O(p(4)N), where p is the number of terms retained in the truncated multipole expansion representation of the potential field of a collection of charged particles. The p term determines the accuracy of the calculation. The limiting O(p(4)) computation in the original FMA is a convolution-like operation on a matrix of multipole coefficients. This paper describes the implementation details of a conversion of this limiting computation to linear convolution, which is then computed in the Fourier domain using the fast Fourier transform (FFT), based on a method originally outlined by Greengard and Rokhlin. In addition, this paper describes a new block decomposition of the multipole expansion data that provides numerical stability and efficient computation. The resulting O(p(2)log(2)(p)) subroutine has a speedup of 2 on a sequential processor over the original method for p = 8, and a speedup of 4 for p = 16. The new subroutine vectorizes well and has a speedup of 3 on a vector processor at p = 8 and a speedup of 6 at p = 16.
引用
收藏
页码:398 / 415
页数:18
相关论文
共 16 条
[1]   THE FAST MULTIPOLE METHOD FOR GRIDLESS PARTICLE SIMULATION [J].
AMBROSIANO, J ;
GREENGARD, L ;
ROKHLIN, V .
COMPUTER PHYSICS COMMUNICATIONS, 1988, 48 (01) :117-125
[2]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[3]   ACCELERATED MOLECULAR-DYNAMICS SIMULATION WITH THE PARALLEL FAST MULTIPOLE ALGORITHM [J].
BOARD, JA ;
CAUSEY, JW ;
LEATHRUM, JF ;
WINDEMUTH, A ;
SCHULTEN, K .
CHEMICAL PHYSICS LETTERS, 1992, 198 (1-2) :89-94
[4]  
BOARD JA, 1990, S PARALLEL VECTOR CO
[5]   A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS [J].
CARRIER, J ;
GREENGARD, L ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :669-686
[6]   A FAST ALGORITHM FOR PARTICLE SIMULATIONS [J].
GREENGARD, L ;
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :325-348
[7]  
Greengard L., 1990, Computers in Physics, V4, P142
[8]   A PARALLEL VERSION OF THE FAST MULTIPOLE METHOD [J].
GREENGARD, L ;
GROPP, WD .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 20 (07) :63-71
[9]  
Greengard L., 1988, The rapid evaluation of potential fields in particle systems
[10]  
GREENGARD L, 1988, LECT NOTES MATH, V360, P121