What is a linear process?

被引:18
作者
Bickel, PJ
Buhlmann, P
机构
[1] Department of Statistics, University of California, Berkeley
关键词
chaos plus noise; ergodicity; Gaussian process; infinitely divisible law; nonlinear process;
D O I
10.1073/pnas.93.22.12128
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We argue that given even an infinitely long data sequence, it is impossible (with any test statistic) to distinguish perfectly between linear and nonlinear processes (including slightly noisy chaotic processes). Our approach is to consider the set of moving-average (linear) processes and study its closure under a suitable metric. We give the precise characterization of this closure, which is unexpectedly large, containing nonergodic processes, which are Poisson sums of independent and identically distributed copies of a stationary process. Proofs of these results will appear elsewhere.
引用
收藏
页码:12128 / 12131
页数:4
相关论文
共 15 条
  • [1] Akamanam S. I., 1986, J TIME SER ANAL, V7, P157, DOI [10.1111/j.1467-9892.1986.tb00499.x, DOI 10.1111/J.1467-9892.1986.TB00499.X]
  • [2] SOME ASYMPTOTIC THEORY FOR THE BOOTSTRAP
    BICKEL, PJ
    FREEDMAN, DA
    [J]. ANNALS OF STATISTICS, 1981, 9 (06) : 1196 - 1217
  • [3] BICKEL PJ, 1997, IN PRESS J THEOR PRO
  • [4] GERSHENFLED NA, 1994, TIME SER PREDICTION
  • [5] Hartigan J. A., 1983, BAYES THEORY
  • [6] Hinich MJ., 1982, J TIME A, V3, P169, DOI [DOI 10.1111/J.1467-9892.1982.TB00339.X, 10.1111/j.1467-9892.1982.tb00339.x]
  • [7] HJELLVIK V, 1995, BIOMETRIKA, V82, P351
  • [8] KLEINER B, 1979, J ROY STAT SOC B MET, V41, P313
  • [9] LE\VY P, 1948, Processus stochastiques et mouvement Brownien
  • [10] LINEAR PROCESSES ARE NEARLY GAUSSIAN
    MALLOWS, CL
    [J]. JOURNAL OF APPLIED PROBABILITY, 1967, 4 (02) : 313 - &