Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide

被引:107
作者
Papadakis, AK [1 ]
Roubelakis-Angelakis, KA [1 ]
机构
[1] Univ Crete, Dept Biol, Iraklion 71409, Greece
关键词
NADPH oxidase; polyamine; programmed cell death; protoplast; reactive oxygen species; totipotency;
D O I
10.1007/s00425-004-1400-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Our previous results indicate that during protoplast isolation an oxidative burst occurs [A.K. Papadakis and KA Roubelakis-Angelakis (1999) Plant Physiol 127:197-205] and that suppression of totipotency is correlated with reduced antioxidant activity and low redox state [A.K. Papadakis et al. (2001b) Plant Physiol 126:434-444]. Polyamines are known to affect cell development and to act as antioxidants. Polyamines applied during isolation of tobacco (Nicotiana tabacum L.) protoplasts reduced the accumulation of O-2(.-) but not that of H2O2. This antioxidant effect is probably due to the inhibition of microsomal membrane NADPH oxidase, which occurred in a concentration-dependent manner, with spermine exerting the highest inhibitory effect. However, during protoplast culture, polyamine oxidase activity increased severalfold in spermidine- and spermine-treated protoplasts, concomitant with H2O2 titers. A cell death program was executed in untreated protoplasts, as documented by membrane malfunction, induced DNase activity, DNA fragmentation and a positive TUNEL reaction. Protoplast cell death was prevented in protoplasts treated with putrescine, but not by treatment with spermidine or spermine, which rather had the opposite effect. The data presented suggest that PAs may be implicated in the expression of plant protoplast totipotency.
引用
收藏
页码:826 / 837
页数:12
相关论文
共 51 条
[1]   Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways [J].
Asai, T ;
Stone, JM ;
Heard, JE ;
Kovtun, Y ;
Yorgey, P ;
Sheen, J ;
Ausubel, FM .
PLANT CELL, 2000, 12 (10) :1823-1835
[3]   OXIDATIVE STRESS IN RECALCITRANT TISSUE-CULTURES OF GRAPEVINE [J].
BENSON, EE ;
ROUBELAKISANGELAKIS, KA .
FREE RADICAL BIOLOGY AND MEDICINE, 1994, 16 (03) :355-362
[4]   Hormonally regulated programmed cell death in barley aleurone cells [J].
Bethke, PC ;
Lonsdale, JE ;
Fath, A ;
Jones, RL .
PLANT CELL, 1999, 11 (06) :1033-1045
[5]   POLYAMINES AS RADICAL SCAVENGERS AND PROTECTANTS AGAINST OZONE DAMAGE [J].
BORS, W ;
LANGEBARTELS, C ;
MICHEL, C ;
SANDERMANN, H .
PHYTOCHEMISTRY, 1989, 28 (06) :1589-1595
[6]   Polyamines and environmental challenges: recent development [J].
Bouchereau, A ;
Aziz, A ;
Larher, F ;
Martin-Tanguy, J .
PLANT SCIENCE, 1999, 140 (02) :103-125
[7]   Plant pathogens and integrated defence responses to infection [J].
Dangl, JL ;
Jones, JDG .
NATURE, 2001, 411 (6839) :826-833
[8]   Plant programmed cell death: A common way to die [J].
Danon, A ;
Delorme, V ;
Mailhac, N ;
Gallois, P .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2000, 38 (09) :647-655
[9]   Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco [J].
Dat, JF ;
Pellinen, R ;
Beeckman, T ;
Van de Cotte, B ;
Langebartels, C ;
Kangasjärvi, J ;
Inzé, D ;
Van Breusegem, F .
PLANT JOURNAL, 2003, 33 (04) :621-632
[10]   Specific features of the ascorbate/glutathione cycle in cultured protoplasts [J].
de Marco, A ;
Roubelakis-Angelakis, KA .
PLANT CELL REPORTS, 1999, 18 (05) :406-411