Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in Ih in hippocampal CA1 pyramidal neurons

被引:165
作者
Brager, Darrin H. [1 ]
Johnston, Daniel [1 ]
机构
[1] Univ Texas Austin, Ctr Learning & Memory, Austin, TX 78712 USA
关键词
H-channels; LTD; metabotropic; rat; PKC; DHPG; METABOTROPIC GLUTAMATE-RECEPTOR; PROTEIN-KINASE-C; ACTIVATED CATION CURRENT; RAT HIPPOCAMPUS; SYNAPTIC PLASTICITY; DENDRITIC EXCITABILITY; SIGNAL-TRANSDUCTION; DENTATE GYRUS; CA2+ CHANNELS; AREA CA1;
D O I
10.1523/JNEUROSCI.3520-07.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Bidirectional changes in synaptic strength are the proposed cellular correlate for information storage in the brain. Plasticity of intrinsic excitability, however, may also be critical for regulating the firing of neurons during mnemonic tasks. We demonstrated previously that the induction long-term potentiation was accompanied by a persistent decrease in CA1 pyramidal neuron excitability (Fan et al., 2005). We show here that induction of long-term depression (LTD) by 3 Hz pairing of back-propagating action potentials with Schaffer collateral EPSPs was accompanied by an overall increase in CA1 neuronal excitability. This increase was observed as an increase in the number of action potentials elicited by somatic current injection and was caused by an increase in neuronal input resistance. After LTD, voltage sag during hyperpolarizing current injections and subthreshold resonance frequency were decreased. All changes were blocked by ZD7288 (4-ethylphenylamino- 1,2-dimethyl- 6-methylaminopyrimidinium chloride), suggesting that a physiological loss of dendritic h-channels was responsible for the increase in excitability. Furthermore, block of group 1 metabotropic glutamate receptors (mGluRs) or protein kinase C prevented the increase in excitability, whereas the group 1 mGluR agonist DHPG [(RS)-3,5-dihydroxyphenylglycine] mimicked the effects. We conclude that 3Hz synaptic stimulation downregulates I-h via activation of group 1 mGluRs and subsequent stimulation of protein kinase C. We propose these changes as part of a homeostatic and bidirectional control mechanism for intrinsic excitability during learning.
引用
收藏
页码:13926 / 13937
页数:12
相关论文
共 63 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]  
ABE T, 1992, J BIOL CHEM, V267, P13361
[3]   Heterosynaptic metaplasticity in the hippocampus in vivo:: A BCM-like modifiable threshold for LTP [J].
Abraham, WC ;
Mason-Parker, SE ;
Bear, MF ;
Webb, S ;
Tate, WP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10924-10929
[4]   LONG-TERM POTENTIATION INVOLVES ENHANCED SYNAPTIC EXCITATION RELATIVE TO SYNAPTIC INHIBITION IN GUINEA-PIG HIPPOCAMPUS [J].
ABRAHAM, WC ;
GUSTAFSSON, B ;
WIGSTROM, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 394 :367-380
[5]   Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons [J].
Aizenman, CD ;
Linden, DJ .
NATURE NEUROSCIENCE, 2000, 3 (02) :109-111
[6]   Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus [J].
Aponte, Yexica ;
Lien, Cheng-Chang ;
Reisinger, Ellen ;
Jonas, Peter .
JOURNAL OF PHYSIOLOGY-LONDON, 2006, 574 (01) :229-243
[7]   SIGNAL TRANSDUCTION AND PHARMACOLOGICAL CHARACTERISTICS OF A METABOTROPIC GLUTAMATE RECEPTOR, MGLUR1, IN TRANSFECTED CHO CELLS [J].
ARAMORI, I ;
NAKANISHI, S .
NEURON, 1992, 8 (04) :757-765
[8]  
Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
[9]   A synaptic basis for memory storage in the cerebral cortex [J].
Bear, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13453-13459
[10]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39