Non-analyticity of the Callan-Symanzik β-function of two-dimensional O(N) models

被引:57
作者
Calabrese, P [1 ]
Caselle, M
Celi, A
Pelissetto, A
Vicari, E
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy
[3] Univ Turin, Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[4] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy
[6] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 46期
关键词
D O I
10.1088/0305-4470/33/46/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the analytic properties of the Callan-Symanzik beta -function beta (g) associated with the zero-momentum four-point coupling g in the two-dimensional phi (4) model with O(N) symmetry. Using renormalization-group arguments, we derive the asymptotic behaviour of beta (g) at the fixed point g*. We argue that beta'(g) = beta'(g*)+ O(\g - g*\(1/7)) for N = 1 and beta'(g) = beta'(g*) + O(1/log\g - g*\) for N greater than or equal to 3. Our claim is supported by an explicit calculation in the Ising lattice model and by a 1/N calculation for the two-dimensional phi (4) theory. We discuss how these non-analytic corrections may give rise to a slow convergence of the perturbative expansion in powers of g.
引用
收藏
页码:8155 / 8170
页数:16
相关论文
共 79 条
[1]   NON-LINEAR SCALING FIELDS AND CORRECTIONS TO SCALING NEAR CRITICALITY [J].
AHARONY, A ;
FISHER, ME .
PHYSICAL REVIEW B, 1983, 27 (07) :4394-4400
[2]   8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES [J].
ANDREWS, GE ;
BAXTER, RJ ;
FORRESTER, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) :193-266
[3]  
Bagnuls C., 1997, Journal of Physical Studies, V1, P366
[4]   NONASYMPTOTIC CRITICAL-BEHAVIOR FROM FIELD-THEORY AT D=3 - THE DISORDERED-PHASE CASE [J].
BAGNULS, C ;
BERVILLIER, C .
PHYSICAL REVIEW B, 1985, 32 (11) :7209-7231
[5]   CRITICAL INDEXES FROM PERTURBATION ANALYSIS OF CALLAN-SYMANZIK EQUATION [J].
BAKER, GA ;
NICKEL, BG ;
MEIRON, DI .
PHYSICAL REVIEW B, 1978, 17 (03) :1365-1374
[6]   ISING-MODEL CRITICAL INDEXES IN 3 DIMENSIONS FROM CALLAN-SYMANZIK EQUATION [J].
BAKER, GA ;
NICKEL, BG ;
GREEN, MS ;
MEIRON, DI .
PHYSICAL REVIEW LETTERS, 1976, 36 (23) :1351-1354
[7]   Comparison of the O(3) bootstrap a model with lattice regularization at low energies [J].
Balog, J ;
Niedermaier, M ;
Niedermayer, F ;
Patrascioiu, A ;
Seiler, E ;
Weisz, P .
PHYSICAL REVIEW D, 1999, 60 (09) :1-11
[8]   The intrinsic coupling in integrable quantum field theories [J].
Balog, J ;
Niedermaier, M ;
Niedermayer, F ;
Patrascioiu, A ;
Seiler, E ;
Weisz, P .
NUCLEAR PHYSICS B, 2000, 583 (03) :614-670
[9]   TWO-DIMENSIONAL ISING-LIKE SYSTEMS - CORRECTIONS TO SCALING IN THE KLAUDER AND DOUBLE-GAUSSIAN MODELS [J].
BARMA, M ;
FISHER, ME .
PHYSICAL REVIEW B, 1985, 31 (09) :5954-5975
[10]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380