The effect of metal silicide formation on silicon nanowire-based lithium-ion battery anode capacity

被引:37
作者
Cho, Jeong-Hyun [1 ]
Li, Xianglong [1 ]
Picraux, S. Tom [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
关键词
Anode; Chemical vapor deposition; Lithium-ion battery; Metal suicide; Silicon nanowire; PERFORMANCE; CELLS; ELECTRODES; ALLOYS;
D O I
10.1016/j.jpowsour.2012.01.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is great interest in one-dimensional (1D) nanostructures that allow lateral relaxation and can be used to reduce pulverization of a silicon-based anode material. However, the growth of high density arrays of silicon nanowires (SiNWs) on metal current collectors using a chemical vapor deposition (CVD) processing is challenging due to competing metal silicide formation during the Si nanowire growth process. An issue with the metal silicide formation is that Si is consumed and this reduces the overall specific capacity as well as the rate capability of a silicon nanowire-based anode material. Here, we demonstrate high density, electrically contacted Si nanowire growth on stainless steel substrates (metal current collectors) with minimal unwanted substrate-silicide formation for high Li ion battery performance. These high-purity silicon nanowire-based anodes show average high specific capacities of 3670 mA h g(-1) at 0.2 C and 3448 mA h g(-1) at 0.5 C over 40 cycles. Moreover, the high-purity silicon nanowires are demonstrated to reach extremely high capacities at high cycle rates (1912 mA h g(-1) and 997 mA h g(-1) at 10 C and 20 C, respectively). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:467 / 473
页数:7
相关论文
共 28 条
[1]   Mechanically milled nanocrystalline Ni3Sn4 and FeSi2 alloys as an anode material for Li-ion batteries [J].
Ahn, JH ;
Wang, GX ;
Liu, HK ;
Dou, SX .
METASTABLE, MECHANICALLY ALLOYED AND NANOCRYSTALLINE MATERIALS, ISMANAM-2000, 2001, 360-3 :595-602
[2]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[3]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Structural and electrochemical study of the reaction of lithium with silicon nanowires [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Huggins, Robert A. ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :34-39
[6]   High rate performance of virus enabled 3D n-type Si anodes for lithium-ion batteries [J].
Chen, Xilin ;
Gerasopoulos, Konstantinos ;
Guo, Juchen ;
Brown, Adam ;
Ghodssi, Reza ;
Culver, James N. ;
Wang, Chunsheng .
ELECTROCHIMICA ACTA, 2011, 56 (14) :5210-5213
[7]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[8]   METALLIZATION-INDUCED SPONTANEOUS SILICIDE FORMATION AT ROOM-TEMPERATURE - THE FE/SI CASE [J].
GALLEGO, JM ;
GARCIA, JM ;
ALVAREZ, J ;
MIRANDA, R .
PHYSICAL REVIEW B, 1992, 46 (20) :13339-13344
[9]   Controlled growth of Si nanowire arrays for device integration [J].
Hochbaum, AI ;
Fan, R ;
He, RR ;
Yang, PD .
NANO LETTERS, 2005, 5 (03) :457-460
[10]  
IDZERDA YU, 1986, SURF SCI, V177, P1028, DOI 10.1016/0039-6028(86)90025-7