Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants

被引:93
作者
Andrews, TJ [1 ]
Whitney, SM [1 ]
机构
[1] Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 2601, Australia
关键词
Rubisco; plastome; chloroplast; tobacco; transgenic plants; transplastomic plants; photosynthesis; antisense RNA;
D O I
10.1016/S0003-9861(03)00100-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transgenic manipulation of the photosynthetic CO2-fixing enzyme, ribulose bisphosphate carboxylase/oxygenase (Rubisco) in higher plants provides a very specific means of testing theories about photosynthesis and its regulation. It also encourages prospects for radically improving the efficiencies with which photosynthesis and plants use the basic resources of light, water, and nutrients. Manipulation was once limited to variation of the leaf's total content of Rubisco by transforming the nucleus with antisense genes directed at the small subunit. More recently, technology for transforming the small genome of the plastid of tobacco has enabled much more precise manipulation and replacement of the plastome-encoded large subunit. Engineered changes in Rubisco's properties in vivo are reflected as profound changes in the photosynthetic gas-exchange properties of the leaves and the growth requirements of the plants. Unpredictable expression of plastid transgenes and assembly requirements of some foreign Rubiscos that are not satisfied in higher-plant plastids provide challenges for future research. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 76 条
[1]   CONSTRUCTION OF A SYNECHOCYSTIS PCC6803 MUTANT SUITABLE FOR THE STUDY OF VARIANT HEXADECAMERIC RIBULOSE-BISPHOSPHATE CARBOXYLASE OXYGENASE ENZYMES [J].
AMICHAY, D ;
LEVITZ, R ;
GUREVITZ, M .
PLANT MOLECULAR BIOLOGY, 1993, 23 (03) :465-476
[2]   Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase [J].
Andersson, I ;
Taylor, TC .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2003, 414 (02) :130-140
[3]   Large structures at high resolution: The 1.6 angstrom crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate [J].
Andersson, I .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 259 (01) :160-174
[4]   BUNDLE SHEATH DEFECTIVE2, a novel protein required for post-translational regulation of the rbcL gene of maize [J].
Brutnell, TP ;
Sawers, RJH ;
Mant, A ;
Langdale, JA .
PLANT CELL, 1999, 11 (05) :849-864
[5]   KANAMYCIN RESISTANCE AS A SELECTABLE MARKER FOR PLASTID TRANSFORMATION IN TOBACCO [J].
CARRER, H ;
HOCKENBERRY, TN ;
SVAB, Z ;
MALIGA, P .
MOLECULAR AND GENERAL GENETICS, 1993, 241 (1-2) :49-56
[6]   Translational regulations as specific traits of chloroplast gene expression [J].
Choquet, Y ;
Wollman, FA .
FEBS LETTERS, 2002, 529 (01) :39-42
[7]   KINETIC STUDY OF RIBULOSE BISPHOSPHATE CARBOXYLASE FROM PHOTOSYNTHETIC BACTERIUM RHODOSPIRILLUM-RUBRUM [J].
CHRISTELLER, JT ;
LAING, WA .
BIOCHEMICAL JOURNAL, 1978, 173 (02) :467-473
[8]   Mechanism of Rubisco: The carbamate as general base [J].
Cleland, WW ;
Andrews, TJ ;
Gutteridge, S ;
Hartman, FC ;
Lorimer, GH .
CHEMICAL REVIEWS, 1998, 98 (02) :549-561
[9]   COEXPRESSION OF PLASTID CHAPERONIN GENES AND A SYNTHETIC PLANT RUBISCO OPERON IN ESCHERICHIA-COLI [J].
CLONEY, LP ;
BEKKAOUI, DR ;
HEMMINGSEN, SM .
PLANT MOLECULAR BIOLOGY, 1993, 23 (06) :1285-1290
[10]   In vitro enzyme evolution:: the screening challenge of isolating the one in a million [J].
Cohen, N ;
Abramov, S ;
Dror, Y ;
Freeman, A .
TRENDS IN BIOTECHNOLOGY, 2001, 19 (12) :507-510