The role of DCX and LIS1 in migration through the lateral cortical stream of developing Forebrain

被引:38
作者
Bai, Jilin [1 ]
Ramos, Raddy L. [1 ]
Paramasivam, Murugan [1 ]
Siddiqi, Faez [1 ]
Ackman, James B. [1 ]
LoTurco, Joseph J. [1 ]
机构
[1] Univ Connecticut, Dept Physiol & Neurobiol, Storrs, CT 06269 USA
关键词
doublecortin; cortex; migration; amygdala; piriform cortex; ventral migratory stream;
D O I
10.1159/000109859
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
During forebrain development the lateral cortical stream (LCS) supplies neurons to structures in the ventral telencephalon including the amygdala and piriform cortex. In the current study, we used spatially directed in utero electroporation and RNAi to investigate mechanisms of migration to the ventral telencephalon. Cells labeled by in utero electroporation of the lateral ventricular zone migrated into the LCS, and entered the lateral neocortex, piriform cortex and amygdala, where they differentiated primarily as pyramidal neurons. RNAi of DCX or LIS1 disrupted migration into amygdala and piriform cortex and caused many neurons to accumulate in the external and amygdalar capsules. RNAi of LIS1 and DCX had similar as well as distinguishable effects on the pattern of altered migration. Combinatorial RNAi of LIS1 and DCX further suggested interaction in the functions of LIS1 and DCX on the morphology and migration of migrating neurons in the LCS. Together, these results confirm that the LCS contributes pyramidal neurons to ventral forebrain structures and reveals that DCX and LIS1 have important functions in this major migratory pathway in the developing forebrain. Copyright (c) 2008 S. Karger AG, Basel.
引用
收藏
页码:144 / 156
页数:13
相关论文
共 56 条
[1]   Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes [J].
Anderson, SA ;
Eisenstat, DD ;
Shi, L ;
Rubenstein, JLR .
SCIENCE, 1997, 278 (5337) :474-476
[2]  
AUSTIN CP, 1990, DEVELOPMENT, V110, P713
[3]   RNAi reveals doublecortin is required for radial migration in rat neocortex [J].
Bai, JL ;
Ramos, RL ;
Ackman, JB ;
Thomas, AM ;
Lee, RV ;
LoTurco, JJ .
NATURE NEUROSCIENCE, 2003, 6 (12) :1277-1283
[4]   CELL-MIGRATION IN THE RAT EMBRYONIC NEOCORTEX [J].
BAYER, SA ;
ALTMAN, J ;
RUSSO, RJ ;
DAI, XF ;
SIMMONS, JA .
JOURNAL OF COMPARATIVE NEUROLOGY, 1991, 307 (03) :499-516
[5]   DEVELOPMENT OF THE ENDOPIRIFORM NUCLEUS AND THE CLAUSTRUM IN THE RAT-BRAIN [J].
BAYER, SA ;
ALTMAN, J .
NEUROSCIENCE, 1991, 45 (02) :391-412
[6]   Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation [J].
Borrell, V ;
Yoshimura, Y ;
Callaway, EM .
JOURNAL OF NEUROSCIENCE METHODS, 2005, 143 (02) :151-158
[7]   T-BRAIN-1 - A HOMOLOG OF BRACHYURY WHOSE EXPRESSION DEFINES MOLECULARLY DISTINCT DOMAINS WITHIN THE CEREBRAL-CORTEX [J].
BULFONE, A ;
SMIGA, SM ;
SHIMAMURA, K ;
PETERSON, A ;
PUELLES, L ;
RUBENSTEIN, JLR .
NEURON, 1995, 15 (01) :63-78
[8]   The temporal and spatial origins of cortical interneurons predict their physiological subtype [J].
Butt, SJB ;
Fuccillo, M ;
Nery, S ;
Noctor, S ;
Kriegstein, A ;
Corbin, JG ;
Fishell, G .
NEURON, 2005, 48 (04) :591-604
[9]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882
[10]   LIS1, CLIP-170's key to the dynein/dynactin pathway [J].
Coquelle, FM ;
Caspi, M ;
Cordelières, FP ;
Dompierre, JP ;
Dujardin, DL ;
Koifman, C ;
Martin, P ;
Hoogenraad, CC ;
Akhmanova, A ;
Galjart, N ;
De Mey, JR ;
Reiner, O .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (09) :3089-3102