Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development

被引:97
作者
Angata, Kiyohiko
Huckaby, Valerie
Ranscht, Barbara
Terskikh, Alexey
Marth, Jamey D.
Fukuda, Minoru
机构
[1] Burnham Inst Med Res, Canc Res Ctr, Glycobiol Program, La Jolla, CA 92037 USA
[2] Burnham Inst Med Res, Dev Neurobiol Programs, La Jolla, CA 92037 USA
[3] Burnham Inst Med Res, Dev Stem Cells & Regenerat Programs, La Jolla, CA 92037 USA
[4] Univ Calif San Diego, Howard Hughes Med Inst, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
关键词
D O I
10.1128/MCB.00205-07
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polysialic acid, which is synthesized by two polysialyltransferases, ST8SiaII and ST8SiaIV, plays an essential role in brain development by modifying the neural cell adhesion molecule (NCAM). It is currently unclear how polysialic acid functions in different processes of neural development. Here we generated mice doubly mutant in both ST8SiaII and ST8SiaIV to determine the effects of loss of polysialic acid on brain development. In contrast to NCAM-deficient, ST8SiaII-deficient, or ST8SiaIV-deficient single mutant mice, ST8SiaII and ST8SiaIV double mutants displayed severe defects in anatomical organization of the forebrain associated with apoptotic cell death. Loss of polysialic acid affected both tangential and radial migration of neural precursors during cortical development, resulting in aberrant positioning of neuronal and glial cells. Glial cell differentiation was aberrantly increased in vivo and in vitro in the absence of polysialic acid. Consistent with these findings, polysialic acid-deficient mice exhibited increased expression of the glial cell marker glial fibrillary acidic protein and a decrease in expression of Pax6, a transcription factor regulating neural cell migration. These results indicate that polysialic acid regulates cell migration and differentiation of neural precursors crucial for brain development.
引用
收藏
页码:6659 / 6668
页数:10
相关论文
共 47 条
[1]   N-CAM binding inhibits the proliferation of hippocampal progenitor cells and promotes their differentiation to a neuronal phenotype [J].
Amoureux, MC ;
Cunningham, BA ;
Edelman, GM ;
Crossin, KL .
JOURNAL OF NEUROSCIENCE, 2000, 20 (10) :3631-3640
[2]   Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule [J].
Angata, K ;
Fukuda, M .
BIOCHIMIE, 2003, 85 (1-2) :195-206
[3]   Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior [J].
Angata, K ;
Long, JM ;
Bukalo, O ;
Lee, W ;
Dityatev, A ;
Wynshaw-Boris, A ;
Schachner, M ;
Fukuda, M ;
Marth, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (31) :32603-32613
[4]   Molecular dissection of the ST8Sia IV polysialyltransferase - Distinct domains are required for neural cell adhesion molecule recognition and polysialylation [J].
Angata, K ;
Chan, D ;
Thibault, J ;
Fukuda, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (24) :25883-25890
[5]   Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression [J].
Berglund, EO ;
Murai, KK ;
Fredette, B ;
Sekerková, G ;
Marturano, B ;
Weber, L ;
Mugnaini, E ;
Ranscht, B .
NEURON, 1999, 24 (03) :739-750
[6]   Newly generated neurons in the amygdala and adjoining cortex of adult primates [J].
Bernier, PJ ;
Bédard, A ;
Vinet, J ;
Lévesque, M ;
Parent, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :11464-11469
[7]   Cortical neuronal migration mutants suggest separate but intersecting pathways [J].
Bielas, S ;
Higginbotham, H ;
Koizumi, H ;
Tanaka, T ;
Gleeson, JG .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2004, 20 :593-618
[8]   Properties of a fetal multipotent neural stem cell (NEP cell) [J].
Cai, JL ;
Wu, YY ;
Mirua, T ;
Pierce, JL ;
Lucero, MT ;
Albertine, KH ;
Spangrude, GJ ;
Rao, MS .
DEVELOPMENTAL BIOLOGY, 2002, 251 (02) :221-240
[9]   Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule [J].
Charles, P ;
Hernandez, MP ;
Stankoff, B ;
Aigrot, MS ;
Colin, C ;
Rougon, G ;
Zalc, B ;
Lubetzki, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7585-7590
[10]  
Chazal G, 2000, J NEUROSCI, V20, P1446