p-adic dynamic systems

被引:35
作者
Albeverio, S [1 ]
Khrennikov, A
Tirozzi, B
De Smedt, S
机构
[1] Ruhr Univ Bochum, Inst Math, D-44780 Bochum, Germany
[2] Essen Bochum Dusseldorf, Dusseldorf, Germany
[3] BiBoS Res Ctr, D-33615 Bielefeld, Germany
[4] CERFIM, Locarno, Switzerland
[5] Univ Vaxjo, Dept Math, S-35195 Vaxjo, Sweden
[6] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[7] Free Univ Brussels, Fac Toegepaste Wetenschappen, B-1050 Brussels, Belgium
关键词
Prime Number; Periodic Point; Siegel Disk; Cyclic Attractor; Invariant Sphere;
D O I
10.1007/BF02575441
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamic systems in non-Archimedean number fields (i.e., fields with non-Archimedean valuations) are studied. Results are obtained for the fields of p-adic numbers and complex p-adic numbers. Simple p-adic dynamic systems have a very rich structure-attractors, Siegel disks, cycles, and a new structure called a "fuzzy cycle." The prime number p plays the role of a parameter of the p-adic dynamic system. Changing p radically changes the behavior of the system: attractors may become the centers of Siegel disks, and vice versa, and cycles of different lengths may appear or disappear.
引用
收藏
页码:276 / 287
页数:12
相关论文
共 24 条
[1]   p-adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom [J].
Albeverio, S ;
Khrennikov, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (13-14) :1665-1673
[2]   Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions [J].
Albeverio, S ;
Khrennikov, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17) :5515-5527
[3]  
ALBEVERIO S, 1997, P ADIC NEURAL NETWOR
[4]  
[Anonymous], 1992, Chaos and Fractals
[5]  
[Anonymous], 1994, P ADIC ANAL MATH PHY
[6]   THE WAVE-FUNCTION OF THE UNIVERSE AND P-ADIC GRAVITY [J].
AREFEVA, IY ;
DRAGOVICH, B ;
FRAMPTON, PH ;
VOLOVICH, IV .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (24) :4341-4358
[7]  
DESMEDT S, IN PRESS MATH ED RES
[8]  
DRAGOVIC B, 1995, P 3 A FRIEDM INT SEM
[9]   ADELIC HARMONIC-OSCILLATOR [J].
DRAGOVICH, B .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (16) :2349-2365
[10]  
ESCASSUT A, 1995, ANAL ELEMENTS P ADIC