A note on conjugate-gradient type methods for indefinite and/or inconsistent linear systems

被引:8
作者
Fischer, B
Hanke, M
Hochbruck, M
机构
[1] UNIV KARLSRUHE, INST PRAKT MATH, D-76128 KARLSRUHE, GERMANY
[2] UNIV TUBINGEN, INST MATH, D-72076 TUBINGEN, GERMANY
[3] UNIV LUBECK, INST MATH, D-23560 LUBECK, GERMANY
关键词
D O I
10.1007/BF02142495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To design a conjugate-gradient type method for a given linear system one has to choose an inner product space and to compute residual polynomials which minimize the induced norm. Here we propose a unified treatment of this approach for symmetric linear systems. We mainly focus on indefinite and/or inconsistent systems.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 13 条
[1]  
[Anonymous], USSR COMPUT MATH MAT
[2]  
CALVETTI D, 1994, SIAM PROC S, P267
[3]   ON THE SOLUTION OF SINGULAR LINEAR-SYSTEMS OF ALGEBRAIC EQUATIONS BY SEMIITERATIVE METHODS [J].
EIERMANN, M ;
MAREK, I ;
NIETHAMMER, W .
NUMERISCHE MATHEMATIK, 1988, 53 (03) :265-283
[4]  
Fischer B, 1996, Tech. rep.
[5]  
FREUND R. W., 1986, THESIS U WURZBURG
[6]  
Golub GH., 1961, Numer Math, V3, P147, DOI [10.1007/BF01386013, DOI 10.1007/BF01386013]
[7]  
HANKE M, IN PRESS PITMAN RES
[8]  
Hanke M., 1993, ELECTRON T NUMER ANA, V1, P89
[9]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[10]   AN ITERATION METHOD FOR THE SOLUTION OF THE EIGENVALUE PROBLEM OF LINEAR DIFFERENTIAL AND INTEGRAL OPERATORS [J].
LANCZOS, C .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 45 (04) :255-282