Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging

被引:212
作者
Wu, O
Koroshetz, WJ
Ostergaard, L
Buonanno, FS
Copen, WA
Gonzalez, RG
Rordorf, G
Rosen, BR
Schwamm, LH
Weisskoff, RM
Sorensen, AG
机构
[1] Massachusetts Gen Hosp, MGH NMR Ctr, Dept Radiol, Boston, MA 02129 USA
[2] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02129 USA
[3] MIT, Cambridge, MA 02139 USA
关键词
cerebral ischemia; magnetic resonance imaging; diffusion-weighted; perfusion-weighted; stroke; acute;
D O I
10.1161/01.STR.32.4.933
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose-Tissue signatures from acute MR imaging of the brain may be able to categorize physiological status and thereby assist clinical decision making. We designed and analyzed statistical algorithms to evaluate the risk of infarction for each voxel of tissue using acute human functional MRI. Methods-Diffusion-weighted MR images (DWI) and perfusion-weighted MR images (PWI) from acute stroke patients scanned within 12 hours of symptom onset were retrospectively studied and used to develop thresholding and generalized Linear model (GLM) algorithms predicting tissue outcome as determined by follow-up MRI, The performances of the algorithms were evaluated for each patient by using receiver operating characteristic curves. Results-At their optimal operating points, thresholding algorithms combining DWI and PWI provided 66% sensitivity and 83% specificity, and GLM algorithms combining DWI and PWI predicted with 66% sensitivity and 84% specificity voxels that proceeded to infarct, Thresholding algorithms that combined DWI and PWI provided significant improvement to algorithms that utilized DWI alone (P=0.02) but no significant improvement over algorithms utilizing PWI alone (P=0.21). GLM algorithms that combined DWI and PWI showed significant improvement over algorithms that used only DWI (P=0.02) or PWI (P=0.04). The performances of thresholding and GLM algorithms were comparable (P>0.2). Conclusions-Algorithms that combine acute DWI and PWI can assess the risk of infarction with higher specificity and sensitivity than algorithms that use DWI or PWI individually. Methods for quantitatively assessing the risk of infarction on a voxel-by-voxel basis show promise as techniques for investigating the natural spatial evolution of ischemic damage in humans.
引用
收藏
页码:933 / 942
页数:10
相关论文
共 49 条
[1]   CLASSIFICATION OF SUBTYPE OF ACUTE ISCHEMIC STROKE - DEFINITIONS FOR USE IN A MULTICENTER CLINICAL-TRIAL [J].
ADAMS, HP ;
BENDIXEN, BH ;
KAPPELLE, LJ ;
BILLER, J ;
LOVE, BB ;
GORDON, DL ;
MARSH, EE ;
KASE, CS ;
WOLF, PA ;
BABIKIAN, VL ;
LICATAGEHR, EE ;
ALLEN, N ;
BRASS, LM ;
FAYAD, PB ;
PAVALKIS, FJ ;
WEINBERGER, JM ;
TUHRIM, S ;
RUDOLPH, SH ;
HOROWITZ, DR ;
BITTON, A ;
MOHR, JP ;
SACCO, RL ;
CLAVIJO, M ;
ROSENBAUM, DM ;
SPARR, SA ;
KATZ, P ;
KLONOWSKI, E ;
CULEBRAS, A ;
CAREY, G ;
MARTIR, NI ;
FICARRA, C ;
HOGAN, EL ;
CARTER, T ;
GURECKI, P ;
MUNTZ, BK ;
RAMIREZLASSEPAS, M ;
TULLOCH, JW ;
QUINONES, MR ;
MENDEZ, M ;
ZHANG, SM ;
ALA, T ;
JOHNSTON, KC ;
ANDERSON, DC ;
TARREL, RM ;
NANCE, MA ;
BUDLIE, SR ;
DIERICH, M ;
HELGASON, CM ;
HIER, DB ;
SHAPIRO, RA .
STROKE, 1993, 24 (01) :35-41
[3]   THRESHOLDS IN CEREBRAL-ISCHEMIA - THE ISCHEMIC PENUMBRA [J].
ASTRUP, J ;
SIESJO, BK ;
SYMON, L .
STROKE, 1981, 12 (06) :723-725
[4]   Magnetic resonance imaging of acute stroke [J].
Baird, AE ;
Warach, S .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1998, 18 (06) :583-609
[5]   Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging [J].
Baird, AE ;
Benfield, A ;
Schlaug, G ;
Siewert, B ;
Lovblad, KO ;
Edelman, RR ;
Warach, S .
ANNALS OF NEUROLOGY, 1997, 41 (05) :581-589
[6]   Identification of major ischemic change - Diffusion-weighted imaging versus computed tomography [J].
Barber, PA ;
Darby, DG ;
Desmond, PM ;
Gerraty, RP ;
Yang, Q ;
Li, T ;
Jolley, D ;
Donnan, GA ;
Tress, BM ;
Davis, SM .
STROKE, 1999, 30 (10) :2059-2065
[7]   Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI [J].
Barber, PA ;
Darby, DG ;
Desmond, PM ;
Yang, Q ;
Gerraty, RP ;
Jolley, D ;
Donnan, GA ;
Tress, BM ;
Davis, SM .
NEUROLOGY, 1998, 51 (02) :418-426
[8]  
Beaulieu C, 1999, ANN NEUROL, V46, P568, DOI 10.1002/1531-8249(199910)46:4<568::AID-ANA4>3.0.CO
[9]  
2-R
[10]  
Bishop C. M., 1995, NEURAL NETWORKS PATT