Support vector machine-based image classification for genetic syndrome diagnosis

被引:28
作者
David, A [1 ]
Lerner, B [1 ]
机构
[1] Ben Gurion Univ Negev, Pattern Anal & Machine Learning Lab, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
关键词
support vector machine (SVM); multiclass classification by error correcting output code (ECOC); rejection; fluorescence in situ hybridization (FISH); genetics;
D O I
10.1016/j.patrec.2004.09.048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We implement structural risk minimization and cross-validation in order to optimize kernel and parameters of a support vector machine (SVM) and multiclass SVM-based image classifiers, thereby enabling the diagnosis of genetic abnormalities. By thresholding the distance of patterns from the hypothesis separating the classes we reject a percentage of the miss-classified patterns reducing the expected risk. Accurate performance of the SVM in comparison to other state-of-the-art classifiers demonstrates the benefit of SVM-based genetic syndrome diagnosis. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1029 / 1038
页数:10
相关论文
共 22 条
[1]   On domain knowledge and feature selection using a support vector machine [J].
Barzilay, O ;
Brailovsky, VL .
PATTERN RECOGNITION LETTERS, 1999, 20 (05) :475-484
[2]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[3]  
Cristianini N., 2000, Intelligent Data Analysis: An Introduction, DOI 10.1017/CBO9780511801389
[4]  
DAVID A, 2004, 17 INT C PATT REC IC
[5]   Face recognition using independent component analysis and support vector machines [J].
Déniz, O ;
Castrillón, M ;
Hernández, M .
PATTERN RECOGNITION LETTERS, 2003, 24 (13) :2153-2157
[6]   Approximate statistical tests for comparing supervised classification learning algorithms [J].
Dietterich, TG .
NEURAL COMPUTATION, 1998, 10 (07) :1895-1923
[7]  
Dietterich TG, 1994, J ARTIF INTELL RES, V2, P263
[8]   Support vector machines for spam categorization [J].
Drucker, H ;
Wu, DH ;
Vapnik, VN .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :1048-1054
[9]  
Fukunaga K., 1990, STAT PATTERN RECOGNI
[10]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914