Class II histone deacetylases:: from sequence to function, regulation, and clinical implication

被引:349
作者
Yang, XJ [1 ]
Grégoire, S [1 ]
机构
[1] McGill Univ, Royal Victoria Hosp, Mol Oncol Grp, Montreal, PQ H3A 1A1, Canada
关键词
D O I
10.1128/MCB.25.8.2873-2884.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Three fundamental issues in postgenomic biology are (i) how the amino acid sequence of a given human protein predicates its structure, function, and regulation; (ii) how a protein is compared to its paralogs, as well as to its orthologs and other homologous proteins in model organisms; and (iii) how related studies contribute to the understanding of human pathology and the development of efficacious diagnostic and therapeutic means. These fascinating issues have inspired us to conduct a comprehensive analysis of information available on class II histone deacetylases (HDACs). In what follows, we will start with a brief description of different classes of HDACs and then compare class II HDACs from yeast and higher organisms in terms of domain organization, function, and regulation. We will also discuss evidence that links class II human HDACs to cardiomyopathy, osteodystrophy, neurodegenerative disorders, and cancer and will propose that, in addition to inhibitors, activators of these HDACs are of potential therapeutic value.
引用
收藏
页码:2873 / 2884
页数:12
相关论文
共 171 条
[1]   Recruitment of IκBα to the hes1 promoter is associated with transcriptional repression [J].
Aguilera, C ;
Hoya-Arias, R ;
Haegeman, G ;
Espinosa, L ;
Bigas, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (47) :16537-16542
[2]   ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain [J].
Amann, JM ;
Nip, J ;
Strom, DK ;
Lutterbach, B ;
Harada, H ;
Lenny, N ;
Downing, JR ;
Meyers, S ;
Hiebert, SW .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (19) :6470-6483
[3]   Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae [J].
Amerik, AY ;
Li, SJ ;
Hochstrasser, M .
BIOLOGICAL CHEMISTRY, 2000, 381 (9-10) :981-992
[4]   Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis [J].
Bakin, RE ;
Jung, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (49) :51218-51225
[5]   DSIR2 and dHDAC6:: Two novel, inhibitor-resistant deacetylases in Drosophila melanogaster [J].
Barlow, AL ;
van Drunen, CM ;
Johnson, CA ;
Tweedie, S ;
Bird, A ;
Turner, BM .
EXPERIMENTAL CELL RESEARCH, 2001, 265 (01) :90-103
[6]   Identification of a small molecule inhibitor of Sir2p [J].
Bedalov, A ;
Gatbonton, T ;
Irvine, WP ;
Gottschling, DE ;
Simon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15113-15118
[7]   Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2 [J].
Berger, I ;
Bieniossek, C ;
Schaffitzel, C ;
Hassler, M ;
Santelli, E ;
Richmond, TJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (20) :17625-17635
[8]   A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J].
Berns, K ;
Hijmans, EM ;
Mullenders, J ;
Brummelkamp, TR ;
Velds, A ;
Heimerikx, M ;
Kerkhoven, RM ;
Madiredjo, M ;
Nijkamp, W ;
Weigelt, B ;
Agami, R ;
Ge, W ;
Cavet, G ;
Linsley, PS ;
Beijersbergen, RL ;
Bernards, R .
NATURE, 2004, 428 (6981) :431-437
[9]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[10]   Role of the tetradecapeptide repeat domain of human histone deacetylase 6 in cytoplasmic retention [J].
Bertos, NR ;
Gilquin, B ;
Chan, GKT ;
Yen, TJ ;
Khochbin, S ;
Yang, XJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (46) :48246-48254