Exon repression by polypyrimidine tract binding protein

被引:99
作者
Amir-Ahmady, B
Boutz, PL
Markovtsov, V
Phillips, ML
Black, DL [1 ]
机构
[1] Univ Calif Los Angeles, Dept Microbiol Mol Genet & Immunol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA
关键词
alternative splicing; splicing regulation; RNP complex; protein-RNA interactions;
D O I
10.1261/rna.2250405
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polypyrimidine tract binding protein (PTB) is known to silence the splicing of many alternative exons. However, exons repressed by PTB are affected by other RNA regulatory elements and proteins. This makes it difficult to dissect the structure of the pre-mRNP complexes that silence splicing, and to understand the role of PTB in this process. We determined the minimal requirements for PTB-mediated splicing repression. We find that the minimal sequence for high affinity binding by PTB is relatively large, containing multiple polypyrimidine elements. Analytical ultracentrifugation and proteolysis mapping of RNA cross-links on the PTB protein indicate that most PTB exists as a monomer, and that a polypyrimidine element extends across multiple PTB domains. The high affinity site is bound initially by a PTB monomer and at higher concentrations by additional PTB molecules. Significantly, this site is not sufficient for splicing repression when placed in the 3' splice site of a strong test exon. Efficient repression requires a second binding site within the exon itself or downstream from it. This second site enhances formation of a multimeric PTB complex, even if it does not bind well to PTB on its own. These experiments show that PTB can be sufficient to repress splicing of an otherwise constitutive exon, without binding sites for additional regulatory proteins and without competing with U2AF binding. The minimal complex mediating splicing repression by PTB requires two binding sites bound by an oligomeric PTB complex.
引用
收藏
页码:699 / 716
页数:18
相关论文
共 57 条
[1]   Operation of nanocrystalline-silicon-based few-electron memory devices in the light of electron storage, ejection, and lifetime characteristics [J].
Banerjee, S ;
Huang, SY ;
Oda, S .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (02) :88-92
[2]   Binding of the protein kinase PKR to RNAs with secondary structure defects: Role of the tandem A-G mismatch and noncontiguous helixes [J].
Bevilacqua, PC ;
George, CX ;
Samuel, CE ;
Cech, TR .
BIOCHEMISTRY, 1998, 37 (18) :6303-6316
[3]  
Black D L, 2003, Prog Mol Subcell Biol, V31, P187
[4]   Mechanisms of alternative pre-messenger RNA splicing [J].
Black, DL .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :291-336
[5]   Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization [J].
Blanchette, M ;
Chabot, B .
EMBO JOURNAL, 1999, 18 (07) :1939-1952
[6]  
Blanchette M, 1997, RNA, V3, P405
[7]   An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein [J].
Carstens, RP ;
Wagner, EJ ;
Garcia-Blanco, MA .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (19) :7388-7400
[8]  
CHAN RC, 1995, MOL CELL BIOL, V15, P6377
[9]   The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream [J].
Chan, RCC ;
Black, DL .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4667-4676
[10]   Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing [J].
Charlet-B, N ;
Logan, P ;
Singh, G ;
Cooper, TA .
MOLECULAR CELL, 2002, 9 (03) :649-658