Physical plasticity of the nucleus in stem cell differentiation

被引:633
作者
Pajerowski, J. David
Dahl, Kris Noel
Zhong, Franklin L.
Sammak, Paul J.
Discher, Dennis E.
机构
[1] Univ Penn, Mol & Cell Biophys Lab, Philadelphia, PA 19104 USA
[2] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Div Dev & Regenerat Med, Pittsburgh, PA 15213 USA
关键词
chromatin remodeling; cell mechanics; nuclear plasticity;
D O I
10.1073/pnas.0702576104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell differentiation in embryogenesis involves extensive changes in gene expression structural reorganization within the nucleus, including chromatin condensation and nucleoprotein immobilization. We hypothesized that nuclei in naive stem cells would therefore prove to be physically plastic and also more pliable than nuclei in differentiated cells. Micromanipulation methods indeed show that nuclei in human embryonic stem cells are highly deformable and stiffen 6-fold through terminal differentiation, and that nuclei in human adult stem cells possess an intermediate stiffness and deform irreversibly. Because the nucleo-skeletal component Lamin A/C is not expressed in either type of stem cell, we knocked down Lamin A/C in human epithelia] cells and measured a deformability similar to that of adult hematopoietic stem cells. Rheologically, lamin-deficient states prove to be the most fluid-like, especially within the first approximate to 10 sec of deformation. Nuclear distortions that persist longer than this are irreversible, and fluorescence-imaged microdeformation with photobleaching confirms that chromatin indeed flows, distends, and reorganizes while the lamina stretches. The rheological character of the nucleus is thus set largely by nucleoplasm/chromatin, whereas the extent of deformation is modulated by the lamina.
引用
收藏
页码:15619 / 15624
页数:6
相关论文
共 53 条
[1]   PLASTICITY OF THE DIFFERENTIATED STATE [J].
BLAU, HM ;
PAVLATH, GK ;
HARDEMAN, EC ;
CHIU, CP ;
SILBERSTEIN, L ;
WEBSTER, SG ;
MILLER, SC ;
WEBSTER, C .
SCIENCE, 1985, 230 (4727) :758-766
[2]   Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy [J].
Boguslavsky, RL ;
Stewart, CL ;
Worman, HJ .
HUMAN MOLECULAR GENETICS, 2006, 15 (04) :653-663
[3]   Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies [J].
Broers, JLV ;
Peeters, EAG ;
Kuijpers, HJH ;
Endert, J ;
Bouten, CVC ;
Oomens, CWJ ;
Baaijens, FPT ;
Ramaekers, FCS .
HUMAN MOLECULAR GENETICS, 2004, 13 (21) :2567-2580
[4]   Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA [J].
Brower-Toland, BD ;
Smith, CL ;
Yeh, RC ;
Lis, JT ;
Peterson, CL ;
Wang, MD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :1960-1965
[5]   Coregulated human globin genes are frequently in spatial proximity when active [J].
Brown, JM ;
Leach, J ;
Reittie, JE ;
Atzberger, A ;
Lee-Prudhoe, J ;
Wood, WG ;
Higgs, DR ;
Iborra, FJ ;
Buckle, VJ .
JOURNAL OF CELL BIOLOGY, 2006, 172 (02) :177-187
[6]   Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation [J].
Constantinescu, D ;
Gray, HL ;
Sammak, PJ ;
Schatten, GP ;
Csoka, AB .
STEM CELLS, 2006, 24 (01) :177-185
[7]   Chromosome territories, nuclear architecture and gene regulation in mammalian cells [J].
Cremer, T ;
Cremer, C .
NATURE REVIEWS GENETICS, 2001, 2 (04) :292-301
[8]   Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure [J].
Cui, Y ;
Bustamante, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :127-132
[9]   Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures [J].
Dahl, KN ;
Engler, AJ ;
Pajerowski, JD ;
Discher, DE .
BIOPHYSICAL JOURNAL, 2005, 89 (04) :2855-2864
[10]   The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber [J].
Dahl, KN ;
Kahn, SM ;
Wilson, KL ;
Discher, DE .
JOURNAL OF CELL SCIENCE, 2004, 117 (20) :4779-4786