Orthotropic node-separation finite element method for composite laminate in hypervelocity impact simulation

被引:10
作者
Zhang, Xiaotian [1 ]
Liu, Tao [1 ,2 ]
Qiu, Xinming [2 ]
机构
[1] Beihang Univ, Sch Astronaut, Beijing 100191, Peoples R China
[2] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypervelocity impact; Composite laminate; Material model; Finite element method; DAMAGE PREDICTION; PLATES; MODEL; COMPUTATIONS; PERFORATION; SPACECRAFT; HAZARDS;
D O I
10.1016/j.actaastro.2017.07.049
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper reports a finite element modeling approach to simulate the hypervelocity impact (HVI) response of composite laminate. Node separation finite element (NSFE) method based on scalar element fracture technique for isotropic material in HVI simulation has been presented in the previous study. To extend NSFE to composite materials, an orthotropic node-separation finite element (ONSFE) method is developed. This approach employs an orthotropic continuum material model and a corresponding orthotropic element fracture technique to represent the HVI behavior/damage of composite laminate. A series of HVI simulations are conducted and the developed ONSFE method is validated by comparing with the experimental data. The simulation results show that ONSFE can successfully capture the HVI phenomena of composite laminate, such as the orthotropic property, nonlinear shock response, perforation, fiber breakage and delamination. Finally, a HVI event of Whipple shield is simulated and the computational capability of ONSFE for predicting the damage state of the composite bumper is further evaluated.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 41 条
[1]   Orbital missions safety - A survey of kinetic hazards [J].
Adushkin, Vitaly ;
Veniaminov, Stanislav ;
Kozlov, Stanislav ;
Silnikov, Mikhail .
ACTA ASTRONAUTICA, 2016, 126 :510-516
[2]   Numerical simulations for high-energy impact of thin plates [J].
Ambur, DR ;
Jaunky, N ;
Lawson, RE ;
Knight, NF .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2001, 25 (07) :683-702
[3]   A CONSTITUTIVE FORMULATION FOR ANISOTROPIC MATERIALS SUITABLE FOR WAVE-PROPAGATION COMPUTER-PROGRAMS .2. [J].
ANDERSON, CE ;
COX, PA ;
JOHNSON, GR ;
MAUDLIN, PJ .
COMPUTATIONAL MECHANICS, 1994, 15 (03) :201-223
[4]   The impact of structural composite materials. Part 2: hypervelocity impact and shock [J].
Appleby-Thomas, Gareth J. ;
Hazell, Paul J. .
JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2012, 47 (07) :406-418
[5]   Hypervelocity impact on carbon/epoxy composites in low Earth orbit environment [J].
Baluch, A. H. ;
Park, Yurim ;
Kim, C. G. .
COMPOSITE STRUCTURES, 2013, 96 :554-560
[6]   Hypervelocity impact simulation using membrane particle-elements [J].
Bohannan, A. ;
Fahrenthold, E. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2008, 35 (12) :1497-1502
[7]   Hypervelocity impact damage prediction in composites: Part 1 - material model and characterisation [J].
Clegg, R. A. ;
White, D. M. ;
Riedel, W. ;
Harwick, W. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2006, 33 (1-12) :190-200
[8]   A hybrid particle-finite element method for hypervelocity impact simulation [J].
Fahrenthold, EP ;
Horban, BA .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1999, 23 (01) :237-248
[9]   A study of the effect of target thickness on the ballistic perforation of glass-fibre-reinforced plastic composites [J].
Gellert, EP ;
Cimpoeru, SJ ;
Woodward, RL .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2000, 24 (05) :445-456
[10]  
Hallquist J.O., 2006, LS-DYNA theory manual, V3